RUS  ENG
Full version
PEOPLE

Akhmet'ev Petr Mikhailovich

Publications in Math-Net.Ru

  1. Evolution of mirror axion solitons

    TMF, 225:2 (2025),  375–390
  2. Evolution of the magnetic field in spatially inhomogeneous axion structures

    TMF, 218:3 (2024),  601–618
  3. Arf invariants of codimension one in a Wall group of the dihedral group

    Mat. Sb., 214:5 (2023),  3–17
  4. Topological meaning of the slope of the Kolmogorov spectrum of magnetic turbulence

    TMF, 209:2 (2021),  351–366
  5. On the properties of the cobordism group of stably-framed immersions in codimension $k$

    Chebyshevskii Sb., 21:2 (2020),  26–36
  6. Knot Invariants in Geodesic Flows

    Trudy Mat. Inst. Steklova, 308 (2020),  50–64
  7. Magnetic helicity flux for mean magnetic field equations

    TMF, 204:1 (2020),  130–141
  8. Projected and near-projected embeddings

    Zap. Nauchn. Sem. POMI, 498 (2020),  75–104
  9. Local coefficients and the Herbert formula

    Fundam. Prikl. Mat., 21:6 (2016),  79–91
  10. On properties of skew-framed immersions cobordism groups

    Fundam. Prikl. Mat., 21:5 (2016),  19–46
  11. Quadratic helicities and the energy of magnetic fields

    Trudy Mat. Inst. Steklova, 278 (2012),  16–28
  12. Hypermagnetic helicity flux in the nuclei of a new phase in the electroweak phase transition

    Pis'ma v Zh. Èksper. Teoret. Fiz., 91:5 (2010),  233–236
  13. Integral Formula for a Generalized Sato–Levine Invariant in Magnetic Hydrodynamics

    Mat. Zametki, 85:4 (2009),  524–537
  14. Remark on the dissipation of the magnetic helicity integral

    TMF, 158:1 (2009),  150–160
  15. Geometric approach to stable homotopy groups of spheres. Kervaire invariants. II

    Fundam. Prikl. Mat., 13:8 (2007),  17–41
  16. Geometric approach to stable homotopy groups of spheres. The Adams–Hopf invariants

    Fundam. Prikl. Mat., 13:8 (2007),  3–15
  17. Some Algebraic Properties of Cerf Diagrams of One-Parameter Function Families

    Funktsional. Anal. i Prilozhen., 39:3 (2005),  1–13
  18. Classification of Harmonic Functions in the Exterior of the Unit Ball

    Mat. Zametki, 75:2 (2004),  182–191
  19. A Remark on the Realization of Mappings of the 3-Dimensional Sphere into Itself

    Trudy Mat. Inst. Steklova, 247 (2004),  10–14
  20. $K_2$ for the simplest integral group rings and topological applications

    Mat. Sb., 194:1 (2003),  23–30
  21. On the Euler characteristic of multiple selfintersection points of immersed manifolds

    Sibirsk. Mat. Zh., 44:2 (2003),  256–262
  22. On Milnor's Invariants of 4-Component Links

    Mat. Zametki, 71:4 (2002),  496–507
  23. A formula for the generalized Sato–Levine invariant

    Mat. Sb., 192:1 (2001),  3–12
  24. A higher-order analog of the helicity number for a pair of divergent-free vector fields

    Zap. Nauchn. Sem. POMI, 279 (2001),  15–23
  25. Embedding of compacta, stable homotopy groups of spheres, and singularity theory

    Uspekhi Mat. Nauk, 55:3(333) (2000),  3–62
  26. On isotopic realizability of continuous mappings

    Zap. Nauchn. Sem. POMI, 267 (2000),  53–87
  27. Generalized Daverman's problem

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 68 (1999),  5–15
  28. A Geometrical Proof of Browder's Result on the Vanishing of the Kervaire Invariant

    Trudy Mat. Inst. Steklova, 225 (1999),  46–51
  29. A Generalization of the Sato–Levine Invariant

    Trudy Mat. Inst. Steklova, 221 (1998),  69–80
  30. Obstructions to splitting manifolds with infinite fundamental group

    Mat. Zametki, 60:2 (1996),  163–175
  31. $\operatorname{Prem}$-mappings, triple self-intersection points of oriented surfaces, and the Rokhlin signature theorem

    Mat. Zametki, 59:6 (1996),  803–810
  32. On isotopic and discrete realizations of maps of an $n$-dimensional sphere in Euclidean space

    Mat. Sb., 187:7 (1996),  3–34
  33. Solution of the problem of realizing a mapping of an $n$-sphere in a Euclidean $2n$-space

    Trudy Mat. Inst. Steklova, 212 (1996),  37–45
  34. An elementary proof of the Freedman immersion theorem

    Algebra i Analiz, 7:5 (1995),  93–100
  35. Smooth immersion of manifolds of small dimension. II. Cobordism group of critical points of multiparameter families of functions

    Mat. Sb., 186:12 (1995),  37–62
  36. Smooth immersions of manifolds of low dimension

    Mat. Sb., 185:10 (1994),  3–26
  37. Splitting homotopy equivalences along a one-sided submanifold of codimension one

    Izv. Akad. Nauk SSSR Ser. Mat., 51:2 (1987),  211–241
  38. Behavior of Bockstein homomorphisms of infinite cellular spaces

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1985, no. 5,  31–33

  39. To the 75th anniversary of Vyacheslav Zigmundovich Grines

    Zhurnal SVMO, 23:4 (2021),  472–476
  40. Corrections to the paper “Geometric Approach to Stable Homotopy Groups of Spheres. The Adams–Hopf Invariants” (Fundamentalnaya i Prikladnaya Matematika, Vol. 13, No. 8, 3–15 (2007))

    Fundam. Prikl. Mat., 15:5 (2009),  211
  41. Mikhail Mikhailovich Postnikov (on his 70th birthday)

    Uspekhi Mat. Nauk, 53:2(320) (1998),  183–184


© Steklov Math. Inst. of RAS, 2026