RUS  ENG
Full version
PEOPLE

Rozanov Yurii Anatol'evich

Publications in Math-Net.Ru

  1. On Monotone Extension of Linear Continuous Functionals

    Teor. Veroyatnost. i Primenen., 46:4 (2001),  814–816
  2. On Measurable Modification of Stochastic Functions

    Teor. Veroyatnost. i Primenen., 46:1 (2001),  175–180
  3. On stochastic boundary problems for harmonic functions in Banach spaces

    Teor. Veroyatnost. i Primenen., 44:1 (1999),  123–128
  4. On piecewise linear approximation for non-linear stochastic evolution

    Teor. Veroyatnost. i Primenen., 43:1 (1998),  192–196
  5. On a Hilbert space method for estimating mean values

    Teor. Veroyatnost. i Primenen., 41:2 (1996),  459–467
  6. On boundary conditions for stochastic evolution equations with an extremally chaotic source

    Mat. Sb., 186:12 (1995),  3–20
  7. Stochastic Sobolev spaces and their boundary trace

    Teor. Veroyatnost. i Primenen., 40:1 (1995),  111–124
  8. On evolution of random fields with an ultra unbounded stochastic source

    Teor. Veroyatnost. i Primenen., 38:2 (1993),  356–373
  9. On stochastic evolution equations with stochastic boundary conditions

    Teor. Veroyatnost. i Primenen., 38:1 (1993),  3–19
  10. General boundary value problems for stochastic partical differential equations

    Trudy Mat. Inst. Steklov., 200 (1991),  289–298
  11. Some boundary value problems for generalized random fields

    Teor. Veroyatnost. i Primenen., 35:4 (1990),  625–641
  12. On the Theory of Generalized Random Functionals

    Teor. Veroyatnost. i Primenen., 34:1 (1989),  228–231
  13. General boundary value problems for stochastic partial differential equations

    Trudy Mat. Inst. Steklov., 182 (1988),  48–56
  14. Some boundary-value problems for generalized differential equations

    Mat. Zametki, 41:1 (1987),  110–118
  15. Markov Random Fields and Boundary Value Problems for Stochastic Partial Differential Equations

    Teor. Veroyatnost. i Primenen., 32:1 (1987),  3–34
  16. On Schrödinger's equation with a generalized potential

    Uspekhi Mat. Nauk, 40:4(244) (1985),  191–192
  17. On equations of Schrödinger type with generalized potential

    Mat. Sb. (N.S.), 127(169):4(8) (1985),  483–493
  18. General boundary value problems for linear differential operators and the method of conjugate equations

    Trudy Mat. Inst. Steklov., 166 (1984),  213–221
  19. On certain generalizations of the Dirichlet problem

    Mat. Sb. (N.S.), 120(162):3 (1983),  291–310
  20. On Markov–Kolmogorov principle for stochastic differential equations

    Teor. Veroyatnost. i Primenen., 28:2 (1983),  362–366
  21. The generalized Dirichlet problem

    Dokl. Akad. Nauk SSSR, 266:5 (1982),  1067–1069
  22. Boundary properties of generalized solutions of linear equations

    Trudy Mat. Inst. Steklov., 157 (1981),  170–177
  23. Some problems on linear theory of random functions

    Teor. Veroyatnost. i Primenen., 25:4 (1980),  704–717
  24. Investigation of the Markov property of random fields

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 14 (1979),  3–70
  25. On the paper “Markov random fields and stochastic partial differential equations”

    Mat. Sb. (N.S.), 106(148):3(7) (1978),  484–492
  26. Markov random fields and stochastic partial differential equations

    Mat. Sb. (N.S.), 103(145):4(8) (1977),  590–613
  27. On the theory of homogeneous random fields

    Mat. Sb. (N.S.), 103(145):1(5) (1977),  3–23
  28. On Markovian extensions of a random processes

    Teor. Veroyatnost. i Primenen., 22:1 (1977),  194–199
  29. Innovation processes and the factorization problem

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 3 (1974),  181–256
  30. Prediction of random processes and the factorization of operator functions

    Mat. Zametki, 14:1 (1973),  157–160
  31. Regularity of stationary processes and factorization of operator functions

    Dokl. Akad. Nauk SSSR, 202:6 (1972),  1277–1279
  32. On the canonical Hida–Cramer representation of stochastic processes

    Teor. Veroyatnost. i Primenen., 16:2 (1971),  348–353
  33. On connection between two characteristics of dependence of Gaussian random vectors

    Teor. Veroyatnost. i Primenen., 15:2 (1970),  304–309
  34. The asymptotically effective evaluation of regression coefficients

    Dokl. Akad. Nauk SSSR, 188:1 (1969),  37–40
  35. Infinite-dimensional Gaussian distributions

    Trudy Mat. Inst. Steklov., 108 (1968),  3–136
  36. On the Gaussian homogeneous fields with given conditional distributions

    Teor. Veroyatnost. i Primenen., 12:3 (1967),  433–443
  37. Gaussian linear functionals in countably-Hilbertian space

    Dokl. Akad. Nauk SSSR, 171:6 (1966),  1286–1288
  38. Some remarks to the paper “On the densities of Gaussian measures and Wiener–Hopf's integral equations”

    Teor. Veroyatnost. i Primenen., 11:3 (1966),  545–547
  39. On the densities of Gaussian measures and Wiener–Hopf's integral equations

    Teor. Veroyatnost. i Primenen., 11:1 (1966),  170–179
  40. On the density of Gaussian distributions and Wiener-Hopf integral equations

    Dokl. Akad. Nauk SSSR, 165:5 (1965),  1000–1002
  41. Some problems of the theory of probability

    Itogi Nauki. Ser. Mat. Anal. Teor. Ver. Regulir. 1962, 1964,  101–154
  42. A problem of optimal control of a complex of devices

    Trudy Mat. Inst. Steklov., 71 (1964),  88–101
  43. Some remarks on asymptotically efficient linear estimates of regression coefficients

    Trudy Mat. Inst. Steklov., 71 (1964),  3–16
  44. On the Stability of Solutions to Linear Problems for Stationary Processes

    Teor. Veroyatnost. i Primenen., 9:3 (1964),  528–530
  45. On Probability Measures in Functional Spaces Corresponding to Stationary Gaussian Processes

    Teor. Veroyatnost. i Primenen., 9:3 (1964),  448–465
  46. On the Equivalence of Gaussian Measures

    Teor. Veroyatnost. i Primenen., 8:3 (1963),  241–250
  47. On a Density of one Gaussian Distribution with Respect to Another

    Teor. Veroyatnost. i Primenen., 7:1 (1962),  84–89
  48. On the Applicability of the Central Limit Theorem to Stationary Processes Which have Passed Through a Linear Filter

    Teor. Veroyatnost. i Primenen., 6:3 (1961),  349–350
  49. Some Limit Theorems for Random Functions. II

    Teor. Veroyatnost. i Primenen., 6:2 (1961),  202–215
  50. On stationary sequences forming a basis

    Dokl. Akad. Nauk SSSR, 130:6 (1960),  1199–1202
  51. Interpolation of stationary processes with discrete time

    Dokl. Akad. Nauk SSSR, 130:4 (1960),  730–733
  52. Spectral Properties of Multivariate Stationary Processes and Boundary Properties of Analytic Matrices

    Teor. Veroyatnost. i Primenen., 5:4 (1960),  399–414
  53. A Central Limit Theorem for Additive Random Functions

    Teor. Veroyatnost. i Primenen., 5:2 (1960),  243–246
  54. On Strong Mixing Conditions for Stationary Gaussian Processes

    Teor. Veroyatnost. i Primenen., 5:2 (1960),  222–227
  55. On the Extrapolation of Generalized Stationary Random Processes

    Teor. Veroyatnost. i Primenen., 4:4 (1959),  465–471
  56. Spectral Analysis of Abstract Functions

    Teor. Veroyatnost. i Primenen., 4:3 (1959),  291–310
  57. Some Limit Theorems for Random Functions. I

    Teor. Veroyatnost. i Primenen., 4:2 (1959),  186–207
  58. Spectral theory of $n$-dimensional stationary stochastic processes with discrete time

    Uspekhi Mat. Nauk, 13:2(80) (1958),  93–142
  59. Linear interpolation of stationary processes with discrete time

    Dokl. Akad. Nauk SSSR, 116:6 (1957),  923–926
  60. On a Local Limit Theorem for Lattice Distributions

    Teor. Veroyatnost. i Primenen., 2:2 (1957),  275–281

  61. Book review: E. B. Dynkin. “Markov Processes”

    Teor. Veroyatnost. i Primenen., 9:3 (1964),  569–574
  62. Review on the book: М. Loève, Probability theory

    Teor. Veroyatnost. i Primenen., 7:2 (1962),  239–240
  63. Review on the book: Е. J. Hannan, Time series analysis

    Teor. Veroyatnost. i Primenen., 6:2 (1961),  255–256
  64. Рецензия на книгу Е.  Б. Дынкина “Основания теории марковских процессов”

    Teor. Veroyatnost. i Primenen., 6:2 (1961),  253–255


© Steklov Math. Inst. of RAS, 2026