RUS  ENG
Full version
PEOPLE

Tunitsky Dmitry Vasilievich

Publications in Math-Net.Ru

  1. Optimal control of harvesting of a distributed renewable resource on the Earth's surface

    Avtomat. i Telemekh., 2024, no. 7,  42–60
  2. Existence of an optimal stationary solution in the KPP model under nonlocal competition

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:3 (2024),  113–121
  3. Existence of maximum of time averaged harvesting in the KPP-model on sphere with permanent and impulse collection

    Dokl. RAN. Math. Inf. Proc. Upr., 514:1 (2023),  59–64
  4. On stabilization of solutions of second-order semilinear parabolic equations on closed manifolds

    Izv. RAN. Ser. Mat., 87:4 (2023),  186–204
  5. On the Quasilinearizability of Hyperbolic Monge–Ampère Systems

    Trudy Mat. Inst. Steklova, 321 (2023),  286–291
  6. On solvability of semilinear second-order elliptic equations on closed manifolds

    Izv. RAN. Ser. Mat., 86:5 (2022),  97–115
  7. Multivalued solutions of hyperbolic Monge-Ampère equations: solvability, integrability, approximation

    Mat. Sb., 211:3 (2020),  71–123
  8. Singularities of Multivalued Solutions of Quasilinear Hyperbolic Systems

    Trudy Mat. Inst. Steklova, 308 (2020),  76–87
  9. On the global solubility of the Cauchy problem for hyperbolic Monge–Ampére systems

    Izv. RAN. Ser. Mat., 82:5 (2018),  167–226
  10. On diagonalization of quasilinear systems with control parameters

    Avtomat. i Telemekh., 2016, no. 6,  22–37
  11. Decoupling systems of hydrodynamic type into subsystems with block-triangular interaction

    Izv. RAN. Ser. Mat., 79:6 (2015),  171–205
  12. Reducing quasilinear systems to block triangular form

    Mat. Sb., 204:3 (2013),  135–160
  13. Monge–Ampère equations and tensorial functors

    Izv. RAN. Ser. Mat., 73:6 (2009),  145–194
  14. On some categories of Monge-Ampère systems of equations

    Mat. Sb., 200:11 (2009),  109–144
  15. On one extremal problem of adaptive machine learning for detection of anomalies

    Avtomat. i Telemekh., 2008, no. 6,  41–52
  16. Hyperbolic Monge–Ampère systems

    Mat. Sb., 197:8 (2006),  119–158
  17. The inverse problem of synthesis of optical elements for laser radiation

    Num. Meth. Prog., 7:1 (2006),  138–162
  18. Monge–Ampére equations and characteristic connection functors

    Izv. RAN. Ser. Mat., 65:6 (2001),  173–222
  19. on contact equivalence of holomorphic Monge–Ampère equations

    Lobachevskii J. Math., 4 (1999),  163–175
  20. On the global solubility of the Monge–Ampere hyperbolic equations

    Izv. RAN. Ser. Mat., 61:5 (1997),  177–224
  21. Equivalence and characteristic connections of the Monge–Ampere equations

    Mat. Sb., 188:5 (1997),  131–157
  22. On the Levi condition for Monge–Ampère equations

    Differ. Uravn., 32:8 (1996),  1078–1088
  23. On the contact linearization of Monge–Ampere equations

    Izv. RAN. Ser. Mat., 60:2 (1996),  195–220
  24. Multivalued solutions of hyperbolic Monge–Ampère equations

    Differ. Uravn., 29:12 (1993),  2178–2189
  25. The Cauchy problem for hyperbolic Monge–Ampère equations

    Izv. RAN. Ser. Mat., 57:4 (1993),  174–191
  26. The Cauchy problem for a hyperbolic Monge–Ampére equation

    Mat. Zametki, 51:6 (1992),  80–90
  27. Regular isometric immersion in the large of two-dimensional metrics of nonpositive curvature

    Mat. Sb., 183:7 (1992),  65–80
  28. Nonlinear hyperbolic systems with two independent variables

    Differ. Uravn., 27:1 (1991),  147–155
  29. On the regular isometric immersion in $E^3$ of unbounded domains of negative curvature

    Mat. Sb. (N.S.), 134(176):1(9) (1987),  119–134


© Steklov Math. Inst. of RAS, 2026