RUS  ENG
Full version
PEOPLE

Firsov Konstantin Nikolaevich

Publications in Math-Net.Ru

  1. Er:YAG, Er:Cr:YSGG and Ho:Yb:Cr:YSGG lasers with high power diode pumping

    Kvantovaya Elektronika, 52:7 (2022),  597–603
  2. Two-photon absorption of nonchain HF laser radiation in germanium single crystals

    Optics and Spectroscopy, 124:6 (2018),  790–794
  3. Repetitively pulsed Fe : ZnSe laser with an average output power of 20 W at room temperature of the polycrystalline active element

    Kvantovaya Elektronika, 47:4 (2017),  303–307
  4. Room-temperature Fe2+ : ZnS single crystal laser pumped by an electric-discharge HF laser

    Kvantovaya Elektronika, 46:9 (2016),  769–771
  5. Room-temperature 1.2-J Fe2+:ZnSe laser

    Kvantovaya Elektronika, 46:1 (2016),  11–12
  6. High-power pulse repetitive HF(DF) laser with a solid-state pump generator

    Kvantovaya Elektronika, 45:11 (2015),  989–992
  7. Scaling of energy characteristics of polycrystalline Fe$^{2+}$:ZnSe laser at room temperature

    Kvantovaya Elektronika, 45:9 (2015),  823–827
  8. Room-temperature high-energy Fe2+:ZnSe laser

    Kvantovaya Elektronika, 44:6 (2014),  505–506
  9. Fe2+ : ZnSe laser pumped by a nonchain electric-discharge HF laser at room temperature

    Kvantovaya Elektronika, 44:2 (2014),  141–144
  10. Influence of gas temperature on self-sustained volume discharge characteristics in working mixtures of a repetitively pulsed СOIL

    Kvantovaya Elektronika, 44:2 (2014),  138–140
  11. Discharge formation systems for generating atomic iodine in a pulse-periodic oxygen–iodine laser

    Kvantovaya Elektronika, 44:1 (2014),  89–93
  12. Initiation of ignition of a combustible gas mixture in a closed volume by the radiation of a high-power pulsed CO2 laser

    Kvantovaya Elektronika, 42:1 (2012),  65–70
  13. On stability of self-sustained volume discharge in working mixtures of non-chain electrochemical HF laser

    Kvantovaya Elektronika, 41:8 (2011),  703–708
  14. Generation of an electric signal in the interaction of HF-laser radiation with bottom surface of a water column

    Kvantovaya Elektronika, 40:8 (2010),  716–719
  15. High-power repetitively pulsed electric-discharge HF laser

    Kvantovaya Elektronika, 40:7 (2010),  615–618
  16. Detachment instability of self-sustained volume discharge in active media of non-chain HF(DF) lasers

    Kvantovaya Elektronika, 40:6 (2010),  484–489
  17. Electrode system for electric-discharge generation of atomic iodine in a repetitively pulsed oxygen — iodine laser with a large active volume

    Kvantovaya Elektronika, 40:5 (2010),  397–399
  18. Solid-state laser-pumped high-power electric-discharge HF laser

    Kvantovaya Elektronika, 40:5 (2010),  393–396
  19. Temporal structure of an electric signal produced upon interaction of radiation from a HF laser with the bottom surface of a water column

    Kvantovaya Elektronika, 39:2 (2009),  179–184
  20. On the possibility of controlling the wave front of a wide-aperture HF(DF) laser by the method of Talbot interferometry

    Kvantovaya Elektronika, 38:1 (2008),  69–72
  21. Study of the temperature dependence of the critical electric field strength in SF6 and mixtures of SF6 with C2H6 by the method of laser gas heating

    Kvantovaya Elektronika, 37:10 (2007),  985–988
  22. Self-sustained volume discharge in SF6-based gas mixtures upon the development of shock-wave perturbations of the medium initiated by a pulsed CO2 laser

    Kvantovaya Elektronika, 36:7 (2006),  646–652
  23. Once again on the role of UV illumination in non-chain electric-discharge HF(DF) lasers

    Kvantovaya Elektronika, 34:2 (2004),  111–114
  24. Self-initiating volume discharge in iodides used for producing atomic iodine in pulsed chemical oxygen – iodine lasers

    Kvantovaya Elektronika, 33:6 (2003),  489–492
  25. Investigation of electric discharges in the vicinity of a charged aerosol cloud and their interaction with a laser-induced spark

    TVT, 41:2 (2003),  200–210
  26. Experimental simulation of a laser lightning-protection system on a device with an artificial cloud of charged aqueous aerosol

    Kvantovaya Elektronika, 32:6 (2002),  523–527
  27. Electric-discharge guiding by a continuous spark by focusing CO2-laser radiation with a conic mirror

    Kvantovaya Elektronika, 32:2 (2002),  115–120
  28. Development of a self-initiated volume discharge in nonchain HF lasers

    Kvantovaya Elektronika, 32:2 (2002),  95–100
  29. Ion – ion recombination in SF6 and in SF6 – C2H6 mixtures for high values of E/N

    Kvantovaya Elektronika, 31:7 (2001),  629–633
  30. Discharge characteristics in a nonchain HF(DF) laser

    Kvantovaya Elektronika, 30:6 (2000),  483–485
  31. Self-initiated volume discharge in nonchain HF lasers based on SF6—hydrocarbon mixtures

    Kvantovaya Elektronika, 30:3 (2000),  207–214
  32. Nonchain electric-discharge HF (DF) laser with a high radiation energy

    Kvantovaya Elektronika, 25:2 (1998),  123–125
  33. Feasibility of increasing the output energy of a nonchain HF (DF) laser

    Kvantovaya Elektronika, 24:3 (1997),  213–215
  34. High-pressure Ar–Xe laser pumped by a self-sustained volume discharge

    Kvantovaya Elektronika, 17:12 (1990),  1546–1547
  35. CHARACTERISTICS OF AN ELECTRIC BREAKDOWN OF INERT-GAS MIXTURES WITH EASY-IONIZED ADMIXTURE

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 15:11 (1989),  89–92
  36. RELATION BETWEEN THE DURATION OF STABLE COMBUSTION OF VOLUME INDEPENDENT DISCHARGE IN WORKING MIXTURES OF THE CO2-LASER AND THE POPULATION OF A3-SIGMA-U+ NITROGEN METASTABLE STATE

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 15:6 (1989),  7–11
  37. N2O laser pumped by a self-sustained volume discharge

    Kvantovaya Elektronika, 16:7 (1989),  1303–1305
  38. Dynamics of population of the A3u+ nitrogen metastable state in a self-sustained volume discharge of a pulsed CO2 laser

    Kvantovaya Elektronika, 16:2 (1989),  269–271
  39. Связь длительности устойчивого горения объемного самостоятельного разряда в рабочих смесях $\mathrm{CO}_2$-лазера с заселенностью метастабильного состояния $\mathrm{A}^3\Sigma_u^+$ азота

    TVT, 27:6 (1989),  1224–1226
  40. VOLUMETRICAL SELF-SUSTAINING DISCHARGE, INITIATING WITH ULTRAVIOLET-RADIATION AND ELECTRONS THE PLASMA OF SPARK DISCHARGE AT THE SURFACE OF A DIALECTRIC

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:22 (1988),  2107–2110
  41. CONTRACTION OF A VOLUME INDEPENDENT DISCHARGE AT LARGE INTERELECTRODE DISTANCES

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:18 (1988),  1662–1667
  42. CHARACTERISTICS OF THE FORMATION OF VOLUME INDEPENDENT DISCHARGE AT LARGE INTERELECTRODE DISTANCES IN ELECTRODE SYSTEMS

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:6 (1988),  541–544
  43. Influence of easily ionizable substances on the stability of a volume self-sustained discharge in working CO2 laser mixtures

    Kvantovaya Elektronika, 15:3 (1988),  553–556
  44. Small-signal gain of CO2 lasers pumped by a self-sustained discharge

    Kvantovaya Elektronika, 15:3 (1988),  506–509
  45. Effect of easy-ionized substances on the popularity of the metastable $A^3\Sigma^+_uN_2$ state in a plasma of a volume independent discharge

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 13:22 (1987),  1363–1367
  46. Dynamics of development of volume independent discharge under pre-filling of the discharge interval with electrons

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 13:9 (1987),  558–562
  47. Dynamic profiling of an electric field in the case of formation of a volume selfsustained discharge under conditions of strong ionization of the electrode regions

    Kvantovaya Elektronika, 14:11 (1987),  2218–2220
  48. Feasibility of increasing the interelectrode distance in a volume discharge by filling the discharge gap with electrons

    Kvantovaya Elektronika, 14:11 (1987),  2139–2140
  49. Large-aperture CO2 amplifier

    Kvantovaya Elektronika, 14:1 (1987),  220–221
  50. Formation of a volume discharge for the pumping of CO2 lasers

    Kvantovaya Elektronika, 14:1 (1987),  135–145
  51. Power $CO_{2}$-laser pumped by the space independent discharge, initiated by electron-beams

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 12:7 (1986),  401–405
  52. Mechanism of formation of a volume discharge initiated by a barrier discharge distributed on the surface of a cathode

    Kvantovaya Elektronika, 13:12 (1986),  2538–2541
  53. Formation of a self-maintained volume discharge for pumping of gas lasers in compact electrode systems

    Kvantovaya Elektronika, 13:10 (1986),  1960–1962
  54. Formation of the space independent discharge in solid gases at large interelectron distances

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 11:20 (1985),  1262–1267
  55. Plasma formation induced by the series of $CO_2$-laser nanosecond pulses

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 11:17 (1985),  1034–1039
  56. Stability of a bulk self-sustained discharge in a CO2–N2–He mixture of gases with easily ionizable additives

    Kvantovaya Elektronika, 12:5 (1985),  1067–1069
  57. High-power electric-discharge CO2 laser with easily ionizable substances added to the mixture

    Kvantovaya Elektronika, 12:1 (1985),  5–9
  58. GENERATION OF THE SINGLE NANOSECOND (LAMBDA=10.6 MKM) EMISSION PULSE BY THE HIGH CONTRAST

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 10:19 (1984),  1192–1196
  59. QUASICONTINUAL REGIME OF LASER GENERATIONS IN NE-XE PLASMA IN OPTICAL-BREAKDOWN

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 10:9 (1984),  562–565
  60. Formation of a spatially homogeneous discharge in large-volume CO2–N2–He gas mixtures

    Kvantovaya Elektronika, 11:11 (1984),  2149–2150
  61. Influence of the pumping regime on lasing of an He–Xe optical-breakdown plasma

    Kvantovaya Elektronika, 11:9 (1984),  1757–1762
  62. Formation of a self-sustained volume discharge with intense ultraviolet irradiation of the cathode region

    Kvantovaya Elektronika, 11:7 (1984),  1327–1332
  63. Electric discharge CO2 laser with a large radiating aperture

    Kvantovaya Elektronika, 11:6 (1984),  1241–1246
  64. Efficiency of utilization of certain readily ionized substances for discharge stabilization in CO2 lasers

    Kvantovaya Elektronika, 11:4 (1984),  735–739
  65. Carbon dioxide laser with a variable output pulse duration

    Kvantovaya Elektronika, 10:9 (1983),  1929–1931
  66. Bulk self-sustained discharge in long gaps containing CO2–N2–He mixtures

    Kvantovaya Elektronika, 10:7 (1983),  1458–1461
  67. Numerical simulation of regenerative amplification of nanosecond pulses in a CO2 laser

    Kvantovaya Elektronika, 9:4 (1982),  832–835
  68. Carbon dioxide laser with an output energy of 3 kJ, excited in matched regime

    Kvantovaya Elektronika, 8:6 (1981),  1331–1334
  69. Possibility of using vibrational-translational relaxation in an amplifying medium for wavefront reversal

    Kvantovaya Elektronika, 7:9 (1980),  2026–2028
  70. Carbon dioxide laser with an active medium containing tripropylamine

    Kvantovaya Elektronika, 6:6 (1979),  1176–1185
  71. Stimulation of a heterogeneous reaction of decomposition of ammonia on the surface of platinum by CO2 laser radiation

    Kvantovaya Elektronika, 4:10 (1977),  2271–2274
  72. Variation of the duration of pulses emitted by a mode-locked carbon dioxide laser

    Kvantovaya Elektronika, 1:2 (1974),  447–449

  73. Errata to the article: Self-initiating volume discharge in iodides used for producing atomic iodine in pulsed chemical oxygen – iodine lasers

    Kvantovaya Elektronika, 33:8 (2003),  750


© Steklov Math. Inst. of RAS, 2026