RUS  ENG
Full version
PEOPLE

Zakharov Valeriy Konstantinovich

Publications in Math-Net.Ru

  1. Characterization of the Dedekind and countably Dedekind extensions of the lattice linear space of continuous bounded functions by means of order boundaries

    Chebyshevskii Sb., 25:3 (2024),  86–100
  2. Characterization of the extension by a means of order bounds for linear lattice of bounded continuous functions generated by $\mu$-Riemann integrable functions

    Algebra i Analiz, 35:4 (2023),  135–166
  3. Optimal control in mathematical state model

    Zhurnal SVMO, 17:2 (2015),  34–38
  4. Postclassical families of functions proper for descriptive and prescriptive spaces

    Fundam. Prikl. Mat., 19:6 (2014),  77–113
  5. Descriptive spaces and proper classes of functions

    Fundam. Prikl. Mat., 19:2 (2014),  51–107
  6. Naturalness of the Class of Lebesgue–Borel–Hausdorff Measurable Functions

    Mat. Zametki, 95:4 (2014),  554–563
  7. The characterization of integrals with respect to arbitrary Radon measures by the boundedness indices

    Fundam. Prikl. Mat., 17:1 (2012),  107–126
  8. Finite Axiomatizability of Local Set Theory

    Mat. Zametki, 90:1 (2011),  70–86
  9. Characterization of Radon integrals as linear functionals

    Fundam. Prikl. Mat., 16:8 (2010),  87–161
  10. The Riesz–Radon–Fréchet problem of characterization of integrals

    Uspekhi Mat. Nauk, 65:4(394) (2010),  153–178
  11. A Class of Uniform Functions and Its Relationship with the Class of Measurable Functions

    Mat. Zametki, 84:6 (2008),  809–824
  12. Classification of Borel sets and functions for an arbitrary space

    Mat. Sb., 199:6 (2008),  49–84
  13. Characterization of the space of Riemann integrable functions by means of cuts of the space of continuous functions. II

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 5,  11–20
  14. Hausdorff theorems on measurable functions and a new class of uniform functions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 1,  3–8
  15. Formula-inaccessible cardinals and a characterization of all natural models of Zermelo–Fraenkel set theory

    Izv. RAN. Ser. Mat., 71:2 (2007),  3–28
  16. Characterization of the space of Riemann integrable functions by means of cuts of the space of continuous functions. I

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 5,  6–13
  17. A new characterization of the Riemann integral and the functions integrable by Riemann

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2006, no. 2,  16–23
  18. Canonical form of Tarski sets in Zermelo–Fränkel set theory

    Mat. Zametki, 77:3 (2005),  323–333
  19. Local set theory

    Mat. Zametki, 77:2 (2005),  194–212
  20. The Riesz–Radon Problem of Characterizing Integrals and the Weak Compactness of Radon Measures

    Trudy Mat. Inst. Steklova, 248 (2005),  106–116
  21. A new characterization of Riemann-integrable functions

    Fundam. Prikl. Mat., 10:3 (2004),  73–83
  22. A canonical form for supertransitive standard models in Zermelo–Fraenkel set theory

    Uspekhi Mat. Nauk, 58:4(352) (2003),  143–144
  23. The problem of general Radon representation for an arbitrary Hausdorff space. II

    Izv. RAN. Ser. Mat., 66:6 (2002),  3–18
  24. Classification of Borel sets and functions in the general case

    Uspekhi Mat. Nauk, 57:4(346) (2002),  175–176
  25. Connections between the integral Radonean representations for locally compact and Hausdorff spaces

    Fundam. Prikl. Mat., 7:1 (2001),  33–46
  26. Algebraic description of rings of continuous functions

    Uspekhi Mat. Nauk, 56:1(337) (2001),  163–164
  27. A two-sorted theory of classes and sets, admitting sets of propositional formulas

    Fundam. Prikl. Mat., 5:2 (1999),  417–435
  28. The problem of general Radon representation for an arbitrary Hausdorff space

    Izv. RAN. Ser. Mat., 63:5 (1999),  37–82
  29. On a conception of a mathematical system

    Fundam. Prikl. Mat., 4:3 (1998),  927–935
  30. Integral representation for Radon measures on arbitrary Hausdorf space

    Fundam. Prikl. Mat., 3:4 (1997),  1135–1172
  31. Radon problem for regular measures on an arbitrary Hausdorf space

    Fundam. Prikl. Mat., 3:3 (1997),  801–808
  32. Connection between the classical ring of quotients of the ring of continuous functions and Riemann integrable functions

    Fundam. Prikl. Mat., 1:1 (1995),  161–176
  33. Extensions of the ring of continuous functions generated by regular, countably-divisible, complete rings of quotients, and their corresponding pre-images

    Izv. RAN. Ser. Mat., 59:4 (1995),  15–60
  34. Extensions of the ring of continuous functions generated by the classical, rational, and regular rings of fractions as divisible hulls

    Mat. Sb., 186:12 (1995),  81–118
  35. The Kaplan extension of the ring and Banach algebra of continuous functions as a divisible hull

    Izv. RAN. Ser. Mat., 58:6 (1994),  51–68
  36. The countably divisible extension and the Baire extension of the ring and the Banach algebra of continuous functions as a divisible hull

    Algebra i Analiz, 5:6 (1993),  121–138
  37. Preimages related to the complete ring of quotients, regular completion, and Hausdorff–Sierpicski and Baire extensions

    Uspekhi Mat. Nauk, 48:5(293) (1993),  171–172
  38. Arens extension of a ring of continuous functions

    Algebra i Analiz, 4:1 (1992),  135–153
  39. The Gordon preimage of an Aleksandrov space as an enclosed covering

    Izv. RAN. Ser. Mat., 56:2 (1992),  427–448
  40. The regular and the Baire extension of the ring of continuous functions as rings of quotients of the same type

    Uspekhi Mat. Nauk, 46:6(282) (1991),  209–210
  41. Universal measurable extension and the arens extension of a Banach algebra of continuous functions

    Funktsional. Anal. i Prilozhen., 24:2 (1990),  83–84
  42. Connections between the Lebesgue extension and the Borel extension of the first class, and between the preimages corresponding to them

    Izv. Akad. Nauk SSSR Ser. Mat., 54:5 (1990),  928–956
  43. The connection between the complete ring of quotients of the ring of continuous functions, regular completion, and Hausdorff–Sierpiński extensions

    Uspekhi Mat. Nauk, 45:6(276) (1990),  133–134
  44. Classical extensions of a vector lattice of continuous functions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1990, no. 4,  15–18
  45. Topological preimages that correspond to classical extensions of a ring of continuous functions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1990, no. 1,  44–47
  46. $cr$-envelopes of a ring of continuous functions

    Dokl. Akad. Nauk SSSR, 294:3 (1987),  531–534
  47. Extensions of vector lattices of continuous functions

    Dokl. Akad. Nauk SSSR, 288:6 (1986),  1297–1301
  48. Two classical extensions of the vector lattice of continuous functions

    Funktsional. Anal. i Prilozhen., 18:2 (1984),  92–93
  49. Hyper-Stonian absolute of a completely regular space

    Dokl. Akad. Nauk SSSR, 267:2 (1982),  280–283
  50. Functional representation of the regular completion of Utumi torsion-free modules

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 5,  22–29
  51. Functional characterization of the absolute vector lattices of functions with the Baire property and of quasinormal functions, and modules of quotients of continuous functions

    Tr. Mosk. Mat. Obs., 45 (1982),  68–104
  52. Characterization of the $\sigma$-covering of a compactum

    Sibirsk. Mat. Zh., 23:6 (1982),  91–99
  53. Spaces of continuous extended functions

    Dokl. Akad. Nauk SSSR, 256:6 (1981),  1301–1305
  54. Characterization of the hyper-Stonian cover of a compact Hausdorff space

    Funktsional. Anal. i Prilozhen., 15:4 (1981),  79–80
  55. Divisibility on countably dense ideals and countable orthocompleteness of modules

    Mat. Zametki, 30:4 (1981),  481–496
  56. Characterization of orthocompleteness and divisibility of modules with the help of an inner order

    Mat. Zametki, 30:1 (1981),  27–43
  57. The sequential absolute and its characterizations

    Dokl. Akad. Nauk SSSR, 253:2 (1980),  280–284
  58. Functional representation of the orthogonal completion and the divisible envelope of Utumi-torsion-free modules

    Mat. Zametki, 27:3 (1980),  333–343
  59. The functional representation of the uniform completion of the maximal and of the countably dense module of fractions of the module of continuous functions

    Uspekhi Mat. Nauk, 35:4(214) (1980),  187–188
  60. Topological spaces and vector lattices

    Uspekhi Mat. Nauk, 35:3(213) (1980),  153–157
  61. The construction of all locally bicompact and all locally bicompact paracompact extensions

    Uspekhi Mat. Nauk, 33:6(204) (1978),  209
  62. Category characterizations of completions of vector lattices

    Dokl. Akad. Nauk SSSR, 234:5 (1977),  1012–1015
  63. The divisible hull and orthocompletion of lattice ordered modules

    Mat. Sb. (N.S.), 103(145):3(7) (1977),  346–357
  64. Regular completion of modules

    Mat. Zametki, 19:6 (1976),  843–851
  65. The divisible hull of $l$-modules

    Uspekhi Mat. Nauk, 31:1(187) (1976),  249–250
  66. The isomorphism between the cohomology groups of a locally compact space and the extension groups of modules

    Sibirsk. Mat. Zh., 15:4 (1974),  947–951
  67. The functional representation of the injective envelope, and tests for the injectivity of certain modules

    Izv. Vyssh. Uchebn. Zaved. Mat., 1973, no. 9,  27–30
  68. The Cousin problem for extended continuous functions on an extremally disconnected space

    Izv. Vyssh. Uchebn. Zaved. Mat., 1973, no. 3,  37–43
  69. The law of distribution of the number of runs in a homogeneous Markov chain

    Dokl. Akad. Nauk SSSR, 179:3 (1968),  526–528
  70. Consolidation of states in a Markov chain and stationary variation of the spectrum

    Dokl. Akad. Nauk SSSR, 160:4 (1965),  762–764
  71. Maximum coefficients of multiple correlation

    Dokl. Akad. Nauk SSSR, 130:2 (1960),  269–271
  72. Imbedding theorems for a space having its metric degenerating at a finite number of internal points within a bounded domain

    Dokl. Akad. Nauk SSSR, 114:5 (1957),  938–941
  73. The first boundary problem for an elliptical type of equations of order four, degenerating at the domain boundary

    Dokl. Akad. Nauk SSSR, 114:4 (1957),  694–697
  74. Imbedding theorems for a space having its metric degenerating on a rectilinear portion of the domain boundary

    Dokl. Akad. Nauk SSSR, 114:3 (1957),  468–471


© Steklov Math. Inst. of RAS, 2026