RUS  ENG
Full version
PEOPLE

Sokolinskaya Irina Mikhailovna

Publications in Math-Net.Ru

  1. On calculating a vertex of feasible solutions polytope of linear constraint system

    Vestn. YuUrGU. Ser. Vych. Matem. Inform., 14:3 (2025),  5–27
  2. Numerical implementation of surface movement method in linear programming

    Vestn. YuUrGU. Ser. Vych. Matem. Inform., 13:3 (2024),  5–31
  3. On new version of the apex method for solving linear programming problems

    Vestn. YuUrGU. Ser. Vych. Matem. Inform., 12:2 (2023),  5–46
  4. On validation of solutions to linear programming problems on cluster computing systems

    Num. Meth. Prog., 22:4 (2021),  252–262
  5. On generator of random problems for linear programming on cluster computing systems

    Vestn. YuUrGU. Ser. Vych. Matem. Inform., 10:2 (2021),  38–52
  6. On an iterative method for solving linear programming problems on cluster computing systems

    Num. Meth. Prog., 21:3 (2020),  329–340
  7. Scalability evaluation of Cimmino algorithm for solving systems of linear inequalities on cluster computing systems

    Vestn. YuUrGU. Ser. Vych. Matem. Inform., 8:1 (2019),  20–35
  8. A scalable algorithm for solving non-stationary linear programming problems

    Num. Meth. Prog., 19:4 (2018),  540–550
  9. Implementation of parallel pursuit algorithm for solving unstable linear programming problems

    Vestn. YuUrGU. Ser. Vych. Matem. Inform., 5:2 (2016),  15–29
  10. Research Stability of Parallel Algorithm for Solving Strong Separability Problem Based on Fejer Mappings

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 12,  5–12
  11. A parallel algorithm for solving strong separability problem on the basis of Fejer mappings

    Num. Meth. Prog., 12:4 (2011),  423–434
  12. About convergence of scalable algorithm of construction pseudoprojection on convex closed set

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 10,  12–21

  13. К 70-летию профессора Вячеслава Николаевича Павленко

    Chelyab. Fiz.-Mat. Zh., 2:4 (2017),  383–387
  14. Representation of trading signals based Kaufman adaptive moving average as a system of linear inequalities

    Vestn. YuUrGU. Ser. Vych. Matem. Inform., 2:4 (2013),  103–108


© Steklov Math. Inst. of RAS, 2026