RUS  ENG
Full version
PEOPLE

Zayarnyi Dmitrii Al'bertovich

Publications in Math-Net.Ru

  1. Photoelectric nature of nanocomposite ZnO/CuO antibacterial activity

    Pis'ma v Zh. Èksper. Teoret. Fiz., 120:1 (2024),  66–75
  2. Symmetric nanostructuring and plasmonic excitation of gold nanostructures by femtosecond Laguerre–Gaussian laser beams

    Kvantovaya Elektronika, 49:7 (2019),  666–671
  3. Polarization-selective excitation of dye luminescence on a gold film by structured ultrashort laser pulses

    Pis'ma v Zh. Èksper. Teoret. Fiz., 107:1 (2018),  18–22
  4. Electron-beam-excited high-pressure He – Ar mixture as a potential active medium for an optically pumped laser

    Kvantovaya Elektronika, 48:12 (2018),  1174–1178
  5. Formation of nanoparticles from thin silver films irradiated by laser pulses in air

    Kvantovaya Elektronika, 48:3 (2018),  251–254
  6. Fabrication of nano- and microstructures inside thin translucent cuprous oxide film upon femtosecond laser exposure

    Pis'ma v Zh. Èksper. Teoret. Fiz., 105:11 (2017),  693–699
  7. Redistribution of a material at femtosecond laser ablation of a thin silver film

    Pis'ma v Zh. Èksper. Teoret. Fiz., 104:11 (2016),  780–786
  8. Surface ablation оf aluminum and silicon by ultrashort laser pulses of variable width

    Pis'ma v Zh. Èksper. Teoret. Fiz., 103:12 (2016),  846–850
  9. Structure and laser-fabrication mechanisms of microcones on silver films of variable thickness

    Pis'ma v Zh. Èksper. Teoret. Fiz., 103:8 (2016),  617–621
  10. Nonlinear absorption mechanisms during femtosecond laser surface ablation of silica glass

    Pis'ma v Zh. Èksper. Teoret. Fiz., 103:5 (2016),  350–354
  11. Nanoscale boiling during single-shot femtosecond laser ablation of thin gold films

    Pis'ma v Zh. Èksper. Teoret. Fiz., 101:6 (2015),  428–432
  12. Photofragmentation of colloidal solutions of gold nanoparticles under femtosecond laser pulses in IR and visible ranges

    Kvantovaya Elektronika, 45:5 (2015),  472–476
  13. Specific features of single-pulse femtosecond laser micron and submicron ablation of a thin silver film coated with a micron-thick photoresist layer

    Kvantovaya Elektronika, 45:5 (2015),  462–466
  14. Surface enhanced infrared absorption of a dye on a metallic diffraction grating

    Pis'ma v Zh. Èksper. Teoret. Fiz., 100:5 (2014),  332–335
  15. Thermocavitation melt instability and micro-crown formation near the threshold for femtosecond laser spallation of a silicon surface

    Pis'ma v Zh. Èksper. Teoret. Fiz., 100:3 (2014),  163–167
  16. Nanoscale hydrodynamic instability in a molten thin gold film induced by femtosecond laser ablation

    Pis'ma v Zh. Èksper. Teoret. Fiz., 99:9 (2014),  601–605
  17. Relaxation phenomena in electronic and lattice subsystems on iron surface during its ablation by ultrashort laser pulses

    Pis'ma v Zh. Èksper. Teoret. Fiz., 99:1 (2014),  54–58
  18. Quenching of the resonance 5s(3P1) state of krypton atoms in collisions with krypton and helium atoms

    Kvantovaya Elektronika, 44:11 (2014),  1066–1070
  19. On the possibility of increasing lifetime of a neutron generator target through laser-induced nanorelief generation at the film – substrate interface

    Kvantovaya Elektronika, 44:9 (2014),  829–835
  20. Mechanisms of formation of sub- and micrometre-scale holes in thin metal films by single nano- and femtosecond laser pulses

    Kvantovaya Elektronika, 44:6 (2014),  540–546
  21. Quenching of krypton atoms in the metastable 5s (3P2) state in collisions with krypton and helium atoms

    Kvantovaya Elektronika, 43:8 (2013),  720–724
  22. Enhanced technique for measuring collisional quenching rate coefficients in rare-gas mixtures

    Kvantovaya Elektronika, 41:2 (2011),  128–134
  23. Quenching of the resonance 5s(3P1) state of the krypton atomin collisions with krypton and argon atoms

    Kvantovaya Elektronika, 40:2 (2010),  144–148
  24. Deactivation of krypton atoms in the metastable 5s(3P2) state in collisions with krypton and argon atoms

    Kvantovaya Elektronika, 39:9 (2009),  821–824
  25. Penning high-pressure lasers on the 3p – 3s transitions in neon emitting at 703 and 920 nm

    Kvantovaya Elektronika, 33:6 (2003),  474–484
  26. Deactivation of xenon atoms in the $6s$ resonant state in collisions with xenon and helium atoms

    Kvantovaya Elektronika, 26:2 (1999),  131–133
  27. Influence of the pump power and of the addition of helium on the energy parameters of an electron-beam-pumped Ar — Xe laser

    Kvantovaya Elektronika, 25:6 (1998),  493–500
  28. Deactivation of the xenon atom in the 6$s$ metastable state in collisions with xenon and helium atoms

    Kvantovaya Elektronika, 25:3 (1998),  229–232
  29. Collisional deactivation of the $6s'$ states of the Xe atom in the active medium of a high-pressure Ar – Xe laser

    Kvantovaya Elektronika, 24:11 (1997),  987–990
  30. Dynamics of transient absorption in the active media of Penning NeI lasers

    Kvantovaya Elektronika, 22:9 (1995),  919–921
  31. Dynamics of small-signal amplification in the active media of Penning NeI lasers

    Kvantovaya Elektronika, 22:9 (1995),  913–918
  32. Optimisation of the energy characteristics of Penning electron-beam-pumped lasers based on the 3p–3s transitions in the Ne atom

    Kvantovaya Elektronika, 22:9 (1995),  887–890
  33. Deactivation of 3s levels of the neon atom by collisions with neon, argon, krypton, and xenon

    Kvantovaya Elektronika, 22:3 (1995),  233–238
  34. Collisional quenching of the 1P1 level of the Ne atom in pure Ne and in mixtures with Ar, Kr, and Xe

    Kvantovaya Elektronika, 20:9 (1993),  851–855
  35. Dynamics of the gain and generation of an Ar–Xe laser pumped by an electron beam

    Kvantovaya Elektronika, 20:7 (1993),  669–676
  36. Electron-beam-pumped laser utilizing mixtures of Xe, Kr, and Ar with two-component buffer gases

    Kvantovaya Elektronika, 18:11 (1991),  1290–1294
  37. Electron-beam-pumped He–Xe, He–Kr, and He–Ar lasers

    Kvantovaya Elektronika, 18:8 (1991),  921–925
  38. Influence of the pump power on the spectral and time characteristics of an Ar–Xe laser

    Kvantovaya Elektronika, 18:5 (1991),  538–544
  39. Electron-beam-controlled Ar–Xe laser using an electron gun with a heated cathode

    Kvantovaya Elektronika, 15:3 (1988),  453–454
  40. High-power electron-beam-controlled Ar–Xe laser with (2.5–5)×10–5 rad beam divergence

    Kvantovaya Elektronika, 14:9 (1987),  1739–1747
  41. Possibility of construction of a pulse-periodic large-volume electron-beamcontrolled laser utilizing infrared transitions in the Xe atom and characterized by a specific output power of 0.5–1 W/cm3

    Kvantovaya Elektronika, 13:8 (1986),  1543–1544
  42. Influence of Ne on the energy characteristics of high-pressure lasers with electron-beam-pumped mixtures of He with Ar, Kr, and Xe

    Kvantovaya Elektronika, 13:3 (1986),  488–492
  43. High-pressure electron-beam-controlled lasers utilizing infrared transitions in ArI

    Kvantovaya Elektronika, 13:3 (1986),  482–487
  44. Electron-beam-pumped high-pressure laser utilizing electronic transitions in the Kr atom

    Kvantovaya Elektronika, 13:1 (1986),  189–191
  45. Possibility of pulse generation with the width of 100 microseconds during high-pressure laser excitation by electron-beams on the $Ar:Xe$ mixture

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 11:3 (1985),  173–176
  46. High-pressure power laser utilizing 3p–3s transitions in NeI generating radiation of wavelengths 703 and 725 nm

    Kvantovaya Elektronika, 12:7 (1985),  1521–1524
  47. Electron-beam-controlled atomic Xe infrared laser

    Kvantovaya Elektronika, 11:9 (1984),  1722–1736


© Steklov Math. Inst. of RAS, 2026