|
|
Publications in Math-Net.Ru
-
Determination of the fraction of excited iodine atoms produced by dissociation of iodides in a self-sustained pulsed discharge
Kvantovaya Elektronika, 47:11 (2017), 1069–1074
-
Dynamics of production of iodine atoms by dissociation of iodides in a pulsed self-sustained discharge
Kvantovaya Elektronika, 43:7 (2013), 610–615
-
Measurement of the O2 (b1Σg+ → a1Δg) transition probability by the method of intracavity laser spectroscopy
Kvantovaya Elektronika, 35:4 (2005), 378–384
-
Pulsed electron-beam-sustained discharge in oxygen-containing gas mixtures: electrical characteristics, spectroscopy,and singlet oxygen yield
Kvantovaya Elektronika, 34:9 (2004), 865–870
-
A pulsed oxygen – iodine chemical laser excited by a longitudinal electric discharge
Kvantovaya Elektronika, 32:7 (2002), 609–613
-
Pulsed chemical oxygen – iodine laser initiated by a transverse electric discharge
Kvantovaya Elektronika, 31:2 (2001), 127–131
-
Pulsed chemical oxygen–iodine laser with volume generation of iodine as a model of a high-power supersonic cw laser
Kvantovaya Elektronika, 25:5 (1998), 410–412
-
Efficient operation of a Co:MgF2 crystal laser pumped by radiation from a pulsed oxygen – iodine laser
Kvantovaya Elektronika, 25:4 (1998), 299–300
-
Chemically pumped oxygen–iodine laser
Kvantovaya Elektronika, 23:7 (1996), 583–600
-
Pulsed chemical oxygen–iodine laser with bulk formation of iodine atoms by an electric discharge
Kvantovaya Elektronika, 22:8 (1995), 776–778
-
Direct measurement, by intracavity laser spectroscopy, of the population difference for the b–X transition in the NF radical
Kvantovaya Elektronika, 22:7 (1995), 692–694
-
Numerical modelling of the process of energy extraction from a mixture of singlet oxygen and iodine in amplification of a short pulse
Kvantovaya Elektronika, 22:2 (1995), 113–116
-
Intracavity second harmonic generation in a pulsed oxygen–iodine chemical laser
Kvantovaya Elektronika, 19:4 (1992), 407–409
-
Influence of atomic oxygen on the dissociation of molecular iodine and dissipation of the energy stored in the active medium of an oxygen–iodine laser
Kvantovaya Elektronika, 18:8 (1991), 912–917
-
Influence of molecular chlorine on the output energy of a pulsed oxygen–iodine chemical laser
Kvantovaya Elektronika, 18:7 (1991), 840–843
-
Luminescence of products of a singlet-oxygen generator in the visible and near infrared
Kvantovaya Elektronika, 18:7 (1991), 832–836
-
Influence of an iodine donor on the output energy of a pulsed oxygen-iodine laser
Kvantovaya Elektronika, 18:1 (1991), 33–37
-
Emission of visible radiation by a chemical oxygen–iodine laser
Kvantovaya Elektronika, 17:2 (1990), 204–205
-
Oxygen–iodine laser with a photodissociation source of excited O2(a1Δg) oxygen
Kvantovaya Elektronika, 16:6 (1989), 1095–1097
-
Influence of chlorine on the energy stored in the active medium of a pulsed oxygen-iodine chemical laser
Kvantovaya Elektronika, 15:9 (1988), 1785–1790
-
Pulse-periodic operation of an oxygen-iodine chemical laser
Kvantovaya Elektronika, 14:5 (1987), 924–935
-
Influence of water vapor on the output energy of a pulsed oxygen-iodine laser
Kvantovaya Elektronika, 13:5 (1986), 1068–1069
-
Investigation of a bubbling type of chemical singlet oxygen generator
Kvantovaya Elektronika, 12:9 (1985), 1921–1925
-
Continuous-wave transfer chemical lasers (review)
Kvantovaya Elektronika, 12:6 (1985), 1127–1173
-
Low temperature operation of a chemical singlet oxygen generator
Kvantovaya Elektronika, 12:3 (1985), 641–642
-
Molecules of CH3I and n-C3F7I as iodine atom donors in a pulsed chemical oxygeniodine laser
Kvantovaya Elektronika, 11:10 (1984), 1893–1894
-
Chemical oxygen-iodine laser utilizing low-strength hydrogen peroxide
Kvantovaya Elektronika, 11:8 (1984), 1688–1689
-
Advantages of pulsed operation of a chemical oxygen-iodine laser
Kvantovaya Elektronika, 11:1 (1984), 201–203
-
Feasibility of developing a cw OH chemical laser
Kvantovaya Elektronika, 11:1 (1984), 97–102
-
Efficiency of initiation of a pulsed H2–F2 laser by photolysis and electron beam methods
Kvantovaya Elektronika, 10:10 (1983), 2126–2128
-
Energy lost in formation of fluorine atoms in the course of electron-beam dissociation of fluorine and fluoride molecules
Kvantovaya Elektronika, 10:2 (1983), 428–429
-
Influence of the initial initiation on the parameters of an H2/F2 laser
Kvantovaya Elektronika, 9:3 (1982), 630–632
-
Investigation into the possibility of obtaining high specific lasing parameters from an HF laser utilizing a chain reaction
Kvantovaya Elektronika, 9:3 (1982), 628–630
-
Investigation of a chemical HF laser utilizing a highpressure H2–SF6 mixture
Kvantovaya Elektronika, 9:3 (1982), 625–628
-
High-efficiency photoinitiated chemical D2–F2–CO2 laser
Kvantovaya Elektronika, 9:3 (1982), 624–625
-
Investigation of a flashlamp-initiated large-volume chemical $H_2-F_2$ laser
Kvantovaya Elektronika, 7:8 (1980), 1821–1823
-
Gasdynamic chemical laser utilizing a $D-O_3-CO_2$ mixture. II. Calculation model
Kvantovaya Elektronika, 7:7 (1980), 1430–437
-
Gasdynamic chemical laser utilizing $D-O_3-CO_2$ and $H-O_3-CO_2$ mixtures. I. Experimental investigation
Kvantovaya Elektronika, 7:7 (1980), 1422–1429
-
Energy parameters of electron-beam-initiated $H_2-F_2-$, $D_2-F_2-$ and $D_2-F_2-CO_2$ lasers
Kvantovaya Elektronika, 7:6 (1980), 1357–1359
-
Investigation of the efficiency of lamp sources for photoinitiation of pulsed hydrogen fluoride lasers
Kvantovaya Elektronika, 6:10 (1979), 2277–2279
-
Investigation of the conditions for efficient initiation of HF chemical lasers by a relativistic electron beam
Kvantovaya Elektronika, 6:10 (1979), 2166–2174
-
Influence of the parameters of a fluorine–hydrogen mixture on the flame propagation velocity
Kvantovaya Elektronika, 6:8 (1979), 1822–1824
-
Investigation of the energy parameters of a chemical ClF–H2 laser with electron-beam initiation
Kvantovaya Elektronika, 5:12 (1978), 2657–2659
-
Gain measurement in a supersonic jet utilizing a D+O3+CO2 mixture
Kvantovaya Elektronika, 5:12 (1978), 2656–2657
-
Efficient electron-beam-pumped HF chemical laser with a high specific energy output
Kvantovaya Elektronika, 5:7 (1978), 1608–1610
-
Investigation of an HF master oscillator–amplifier system based on the chain hydrogen–fluorine reaction
Kvantovaya Elektronika, 5:4 (1978), 910–913
-
Possibility of obtaining generation on a CO molecule behind the front of a compressed detonation wave in a CS$_2$ + O$_2$ mixture
Fizika Goreniya i Vzryva, 12:5 (1976), 739–744
-
Supersonic chemical CO2 laser utilizing mixing of atomic deuterium with ozone and carbon dioxide
Kvantovaya Elektronika, 3:5 (1976), 1142–1143
-
Stimulated emission from a CS2–O mixture in a shock tube with a supersonic nozzle
Kvantovaya Elektronika, 3:2 (1976), 463–465
-
Photoinitiated chemical CO laser utilizing CS2+O3 mixtures
Kvantovaya Elektronika, 3:2 (1976), 362–368
-
Influence of cooling on the operation of a chemical CO2 laser utilizing an O3 : D2 : CO2 mixture
Kvantovaya Elektronika, 2:11 (1975), 2534–2536
-
Investigation of the energy characteristics of a chemical ŅO2 laser utilizing a O3 + D2 + CO2 mixture
Kvantovaya Elektronika, 2:9 (1975), 2092–2095
-
Output parameters of a chemical CS2+O2 laser
Kvantovaya Elektronika, 1972, no. 5(11), 129–131
-
Utilization of photorecombination of radicals and atoms in continuous-wave lasers
Kvantovaya Elektronika, 1971, no. 6, 89–91
-
Interaction of a quasi-stationary laser beam with a metal
Prikl. Mekh. Tekh. Fiz., 9:3 (1968), 126–128
-
Strain effects due to interaction of laser radiation with a metal
Prikl. Mekh. Tekh. Fiz., 8:4 (1967), 145–146
© , 2026