RUS  ENG
Full version
PEOPLE

Yuryshev Nikolai Nikolaevich

Publications in Math-Net.Ru

  1. Determination of the fraction of excited iodine atoms produced by dissociation of iodides in a self-sustained pulsed discharge

    Kvantovaya Elektronika, 47:11 (2017),  1069–1074
  2. Dynamics of production of iodine atoms by dissociation of iodides in a pulsed self-sustained discharge

    Kvantovaya Elektronika, 43:7 (2013),  610–615
  3. Measurement of the O2 (b1Σg+ → a1Δg) transition probability by the method of intracavity laser spectroscopy

    Kvantovaya Elektronika, 35:4 (2005),  378–384
  4. Pulsed electron-beam-sustained discharge in oxygen-containing gas mixtures: electrical characteristics, spectroscopy,and singlet oxygen yield

    Kvantovaya Elektronika, 34:9 (2004),  865–870
  5. A pulsed oxygen – iodine chemical laser excited by a longitudinal electric discharge

    Kvantovaya Elektronika, 32:7 (2002),  609–613
  6. Pulsed chemical oxygen – iodine laser initiated by a transverse electric discharge

    Kvantovaya Elektronika, 31:2 (2001),  127–131
  7. Pulsed chemical oxygen–iodine laser with volume generation of iodine as a model of a high-power supersonic cw laser

    Kvantovaya Elektronika, 25:5 (1998),  410–412
  8. Efficient operation of a Co:MgF2 crystal laser pumped by radiation from a pulsed oxygen – iodine laser

    Kvantovaya Elektronika, 25:4 (1998),  299–300
  9. Chemically pumped oxygen–iodine laser

    Kvantovaya Elektronika, 23:7 (1996),  583–600
  10. Pulsed chemical oxygen–iodine laser with bulk formation of iodine atoms by an electric discharge

    Kvantovaya Elektronika, 22:8 (1995),  776–778
  11. Direct measurement, by intracavity laser spectroscopy, of the population difference for the bX transition in the NF radical

    Kvantovaya Elektronika, 22:7 (1995),  692–694
  12. Numerical modelling of the process of energy extraction from a mixture of singlet oxygen and iodine in amplification of a short pulse

    Kvantovaya Elektronika, 22:2 (1995),  113–116
  13. Intracavity second harmonic generation in a pulsed oxygen–iodine chemical laser

    Kvantovaya Elektronika, 19:4 (1992),  407–409
  14. Influence of atomic oxygen on the dissociation of molecular iodine and dissipation of the energy stored in the active medium of an oxygen–iodine laser

    Kvantovaya Elektronika, 18:8 (1991),  912–917
  15. Influence of molecular chlorine on the output energy of a pulsed oxygen–iodine chemical laser

    Kvantovaya Elektronika, 18:7 (1991),  840–843
  16. Luminescence of products of a singlet-oxygen generator in the visible and near infrared

    Kvantovaya Elektronika, 18:7 (1991),  832–836
  17. Influence of an iodine donor on the output energy of a pulsed oxygen-iodine laser

    Kvantovaya Elektronika, 18:1 (1991),  33–37
  18. Emission of visible radiation by a chemical oxygen–iodine laser

    Kvantovaya Elektronika, 17:2 (1990),  204–205
  19. Oxygen–iodine laser with a photodissociation source of excited O2(a1Δg) oxygen

    Kvantovaya Elektronika, 16:6 (1989),  1095–1097
  20. Influence of chlorine on the energy stored in the active medium of a pulsed oxygen-iodine chemical laser

    Kvantovaya Elektronika, 15:9 (1988),  1785–1790
  21. Pulse-periodic operation of an oxygen-iodine chemical laser

    Kvantovaya Elektronika, 14:5 (1987),  924–935
  22. Influence of water vapor on the output energy of a pulsed oxygen-iodine laser

    Kvantovaya Elektronika, 13:5 (1986),  1068–1069
  23. Investigation of a bubbling type of chemical singlet oxygen generator

    Kvantovaya Elektronika, 12:9 (1985),  1921–1925
  24. Continuous-wave transfer chemical lasers (review)

    Kvantovaya Elektronika, 12:6 (1985),  1127–1173
  25. Low temperature operation of a chemical singlet oxygen generator

    Kvantovaya Elektronika, 12:3 (1985),  641–642
  26. Molecules of CH3I and n-C3F7I as iodine atom donors in a pulsed chemical oxygeniodine laser

    Kvantovaya Elektronika, 11:10 (1984),  1893–1894
  27. Chemical oxygen-iodine laser utilizing low-strength hydrogen peroxide

    Kvantovaya Elektronika, 11:8 (1984),  1688–1689
  28. Advantages of pulsed operation of a chemical oxygen-iodine laser

    Kvantovaya Elektronika, 11:1 (1984),  201–203
  29. Feasibility of developing a cw OH chemical laser

    Kvantovaya Elektronika, 11:1 (1984),  97–102
  30. Efficiency of initiation of a pulsed H2–F2 laser by photolysis and electron beam methods

    Kvantovaya Elektronika, 10:10 (1983),  2126–2128
  31. Energy lost in formation of fluorine atoms in the course of electron-beam dissociation of fluorine and fluoride molecules

    Kvantovaya Elektronika, 10:2 (1983),  428–429
  32. Influence of the initial initiation on the parameters of an H2/F2 laser

    Kvantovaya Elektronika, 9:3 (1982),  630–632
  33. Investigation into the possibility of obtaining high specific lasing parameters from an HF laser utilizing a chain reaction

    Kvantovaya Elektronika, 9:3 (1982),  628–630
  34. Investigation of a chemical HF laser utilizing a highpressure H2–SF6 mixture

    Kvantovaya Elektronika, 9:3 (1982),  625–628
  35. High-efficiency photoinitiated chemical D2–F2–CO2 laser

    Kvantovaya Elektronika, 9:3 (1982),  624–625
  36. Investigation of a flashlamp-initiated large-volume chemical $H_2-F_2$ laser

    Kvantovaya Elektronika, 7:8 (1980),  1821–1823
  37. Gasdynamic chemical laser utilizing a $D-O_3-CO_2$ mixture. II. Calculation model

    Kvantovaya Elektronika, 7:7 (1980),  1430–437
  38. Gasdynamic chemical laser utilizing $D-O_3-CO_2$ and $H-O_3-CO_2$ mixtures. I. Experimental investigation

    Kvantovaya Elektronika, 7:7 (1980),  1422–1429
  39. Energy parameters of electron-beam-initiated $H_2-F_2-$, $D_2-F_2-$ and $D_2-F_2-CO_2$ lasers

    Kvantovaya Elektronika, 7:6 (1980),  1357–1359
  40. Investigation of the efficiency of lamp sources for photoinitiation of pulsed hydrogen fluoride lasers

    Kvantovaya Elektronika, 6:10 (1979),  2277–2279
  41. Investigation of the conditions for efficient initiation of HF chemical lasers by a relativistic electron beam

    Kvantovaya Elektronika, 6:10 (1979),  2166–2174
  42. Influence of the parameters of a fluorine–hydrogen mixture on the flame propagation velocity

    Kvantovaya Elektronika, 6:8 (1979),  1822–1824
  43. Investigation of the energy parameters of a chemical ClF–H2 laser with electron-beam initiation

    Kvantovaya Elektronika, 5:12 (1978),  2657–2659
  44. Gain measurement in a supersonic jet utilizing a D+O3+CO2 mixture

    Kvantovaya Elektronika, 5:12 (1978),  2656–2657
  45. Efficient electron-beam-pumped HF chemical laser with a high specific energy output

    Kvantovaya Elektronika, 5:7 (1978),  1608–1610
  46. Investigation of an HF master oscillator–amplifier system based on the chain hydrogen–fluorine reaction

    Kvantovaya Elektronika, 5:4 (1978),  910–913
  47. Possibility of obtaining generation on a CO molecule behind the front of a compressed detonation wave in a CS$_2$ + O$_2$ mixture

    Fizika Goreniya i Vzryva, 12:5 (1976),  739–744
  48. Supersonic chemical CO2 laser utilizing mixing of atomic deuterium with ozone and carbon dioxide

    Kvantovaya Elektronika, 3:5 (1976),  1142–1143
  49. Stimulated emission from a CS2–O mixture in a shock tube with a supersonic nozzle

    Kvantovaya Elektronika, 3:2 (1976),  463–465
  50. Photoinitiated chemical CO laser utilizing CS2+O3 mixtures

    Kvantovaya Elektronika, 3:2 (1976),  362–368
  51. Influence of cooling on the operation of a chemical CO2 laser utilizing an O3 : D2 : CO2 mixture

    Kvantovaya Elektronika, 2:11 (1975),  2534–2536
  52. Investigation of the energy characteristics of a chemical ŅO2 laser utilizing a O3 + D2 + CO2 mixture

    Kvantovaya Elektronika, 2:9 (1975),  2092–2095
  53. Output parameters of a chemical CS2+O2 laser

    Kvantovaya Elektronika, 1972, no. 5(11),  129–131
  54. Utilization of photorecombination of radicals and atoms in continuous-wave lasers

    Kvantovaya Elektronika, 1971, no. 6,  89–91
  55. Interaction of a quasi-stationary laser beam with a metal

    Prikl. Mekh. Tekh. Fiz., 9:3 (1968),  126–128
  56. Strain effects due to interaction of laser radiation with a metal

    Prikl. Mekh. Tekh. Fiz., 8:4 (1967),  145–146


© Steklov Math. Inst. of RAS, 2026