RUS  ENG
Full version
PEOPLE

Simakov Vladimir Aleksandrovich

Publications in Math-Net.Ru

  1. High-speed current switches based on AlGaAs/GaAs heterostructure thyristors with a thick $p$-base (8 $\mu$m)

    Fizika i Tekhnika Poluprovodnikov, 59:10 (2025),  629–634
  2. Sources of high-power laser pulses of sub-nanosecond duration based on thyristor switch-laser diode structures for the 1500nm spectral range

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:17 (2025),  49–52
  3. Sources of high-power laser pulses at a wavelength of 1550 nm based on thyristor switch-laser designs

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:16 (2025),  21–25
  4. Compact high-power nanosecond-duration laser pulse sources (940 nm) based on “semiconductor laser – thyristor switch” vertical stacks

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:11 (2025),  7–10
  5. Hybrid stacks of thyristor switch – semiconductor laser based on AlInGaAsP/InP heterostructures for high-power pulsed laser sources (1400–1500 nm)

    Fizika i Tekhnika Poluprovodnikov, 58:3 (2024),  165–170
  6. Low-voltage current switches based on AlInGaAsP/InP thyristor heterostructures for nanosecond pulsed laser emitters (1.5 $\mu$m)

    Fizika i Tekhnika Poluprovodnikov, 58:3 (2024),  161–164
  7. The effect of the cavity length on the output optical power of semiconductor laser-thyristors based on AlGaAs/GaAs/InGaAs heterostructures

    Fizika i Tekhnika Poluprovodnikov, 58:2 (2024),  96–105
  8. Thyristor switches based on hetero and homostructures (Al)GaAs/GaAs for generating high-frequency nanosecond current pulses

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:4 (2024),  43–46
  9. Temperature dependence of the output optical power of semiconductor lasers–thyristors based on AlGaAs/GaAs/InGaAs heterostructures

    Kvantovaya Elektronika, 54:4 (2024),  218–223
  10. High-current low-voltage switches for nanosecond pulse durations based on thyristor (Al)GaAs/GaAs homo- and heterostructures

    Fizika i Tekhnika Poluprovodnikov, 57:8 (2023),  678–683
  11. Low-voltage InP heterostyristors for 50–150 ns current pulses generation

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 49:16 (2023),  29–32
  12. High power and repetition rate integral laser source (1060 nm) based on laser diode array and 2D multi-element opto-thyristor array as a high-speed current switch

    Kvantovaya Elektronika, 53:1 (2023),  11–16
  13. Semiconductor lasers with improved radiation characteristics

    Kvantovaya Elektronika, 52:12 (2022),  1079–1087
  14. Turn on process spatial dynamics of a thyristor laser (905nm) based on an AlGaAs/InGaAs/GaAs heterostructure

    Fizika i Tekhnika Poluprovodnikov, 55:5 (2021),  466–472
  15. Increasing the pump current range of a single-frequency laser diode tuned to the caesium D2 line

    Kvantovaya Elektronika, 51:11 (2021),  970–975
  16. High-power pulsed hybrid semiconductor lasers emitting in the wavelength range 900–920 nm

    Kvantovaya Elektronika, 51:10 (2021),  912–914
  17. Triple integrated laser–thyristor

    Kvantovaya Elektronika, 50:11 (2020),  1001–1003
  18. 1.5 – 1.6 μm semiconductor lasers with an asymmetric periodic optically coupled waveguide

    Kvantovaya Elektronika, 50:6 (2020),  600–602
  19. Experimental studies of 1.5–1.6 μm high-power single-frequency semiconductor lasers

    Kvantovaya Elektronika, 50:2 (2020),  143–146
  20. Experimental studies of the on-state propagation dynamics of low-voltage laser-thyristors based on AlGaAs/InGaAs/GaAs heterostructures

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:8 (2019),  7–11
  21. Double integrated laser-thyristor

    Kvantovaya Elektronika, 49:11 (2019),  1011–1013
  22. Experimental studies of 1.5–1.6 μm high-power asymmetric-waveguide multimode lasers

    Kvantovaya Elektronika, 49:7 (2019),  649–652
  23. AlGaInAs/InP semiconductor lasers with an increased electron barrier

    Kvantovaya Elektronika, 49:6 (2019),  519–521
  24. Compact laser diode array based on epitaxially integrated AlGaAs/GaAs heterostructures

    Kvantovaya Elektronika, 48:11 (2018),  993–995
  25. Experimental studies of 1.5–1.6 μm high-power asymmetricwaveguide single-mode lasers

    Kvantovaya Elektronika, 48:6 (2018),  495–501
  26. Laser diode arrays based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 62%

    Kvantovaya Elektronika, 47:8 (2017),  693–695
  27. Laser diode bars based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 70%

    Kvantovaya Elektronika, 47:4 (2017),  291–293
  28. On the control efficiency of a high-power laser thyristor emitting in the 890–910 nm spectral range

    Fizika i Tekhnika Poluprovodnikov, 48:5 (2014),  716–718
  29. Laser emitters ($\lambda$ = 808 nm) based on AlGaAs/GaAs heterostructures

    Fizika i Tekhnika Poluprovodnikov, 48:1 (2014),  120–124
  30. Laser-diode arrays based on epitaxial integrated heterostructures with increased power and brightness of the pulse emission

    Fizika i Tekhnika Poluprovodnikov, 48:1 (2014),  104–108
  31. High-power pulse-emitting lasers in the 1.5–1.6 $\mu$m spectral region

    Fizika i Tekhnika Poluprovodnikov, 48:1 (2014),  100–103
  32. Simulation of power – current characteristics of high-power semiconductor lasers emitting in the range 1.5 – 1.55 μm

    Kvantovaya Elektronika, 44:2 (2014),  149–156
  33. AlGaAs/GaAs laser diode bars (λ = 808 nm) with improved thermal stability

    Kvantovaya Elektronika, 43:10 (2013),  895–897
  34. 1.5 to 1.6 μm pulsed laser diode bars based on epitaxially stacked AlGaInAs/InP heterostructures

    Kvantovaya Elektronika, 43:9 (2013),  822–823
  35. High-power pulsed laser diodes emitting in the range 1.5 – 1.6 μm

    Kvantovaya Elektronika, 43:9 (2013),  819–821
  36. High-power 850–870-nm pulsed lasers based on heterostructures with narrow and wide waveguides

    Kvantovaya Elektronika, 43:5 (2013),  407–409
  37. Laser diodes with several emitting regions ($\lambda$ = 800–1100 nm) on the basis of epitaxially integrated heterostructures

    Fizika i Tekhnika Poluprovodnikov, 45:4 (2011),  528–534
  38. A study of epitaxially stacked tunnel-junction semiconductor lasers grown by MOCVD

    Fizika i Tekhnika Poluprovodnikov, 44:2 (2010),  251–255
  39. Dual-wavelength laser diodes based on epitaxially stacked heterostructures

    Kvantovaya Elektronika, 40:8 (2010),  697–699
  40. 808-nm laser diode bars based on epitaxially stacked double heterostructures

    Kvantovaya Elektronika, 40:8 (2010),  682–684
  41. High-power laser diodes based on triple integrated InGaAs/AlGaAs/GaAs structures emitting at 0.9 μm

    Kvantovaya Elektronika, 39:8 (2009),  723–726
  42. Double integrated nanostructures for pulsed 0.9-μm laser diodes

    Kvantovaya Elektronika, 38:11 (2008),  989–992
  43. Study of the parameters of a single-frequency laser for pumping cesium frequency standards

    Kvantovaya Elektronika, 38:4 (2008),  319–324
  44. Study of the spectral and power characteristics of superluminescent diodes

    Kvantovaya Elektronika, 34:1 (2004),  15–19
  45. An operator method for solving the problem on equilibrium of a nonhomogeneous anisotropic band

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2003, no. 5,  63–68
  46. Constructional features of a LISD-2M laser velocimeter and rangefinder

    Kvantovaya Elektronika, 32:3 (2002),  247–250
  47. High-power semiconductor 0.89 – 1.06-μm lasers with a low emission divergence based on strained quantum-well InGaAs/(Al)GaAs structures

    Kvantovaya Elektronika, 32:3 (2002),  213–215
  48. Highly efficient minilaser with transverse pulsed semiconductor pumping for eye-safe laser range-finding

    Kvantovaya Elektronika, 32:3 (2002),  210–212
  49. 150-W, 808-nm quasi-cw diode arrays based on AlGaAs/GaAs heterostructures with improved thermal characteristics

    Kvantovaya Elektronika, 31:8 (2001),  659–660
  50. The problem on equilibrium of a nonhomogeneous band

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 4,  66–70
  51. Fiber-optic ring interferometer with a multimode waveguide

    Kvantovaya Elektronika, 10:10 (1983),  2104–2107
  52. Radiative characteristics of injection lasers with short resonators

    Kvantovaya Elektronika, 10:2 (1983),  364–370

  53. In memory of Mitrofan Fedorovich Stel'makh

    Kvantovaya Elektronika, 48:12 (2018),  1179
  54. In memory of Vasilii Ivanovich Shveikin (4 February 1935 – 4 January 2018)

    Kvantovaya Elektronika, 48:3 (2018),  290


© Steklov Math. Inst. of RAS, 2026