RUS  ENG
Full version
PEOPLE

Ladugin Maksim Anatol'evich

Publications in Math-Net.Ru

  1. High-speed current switches based on AlGaAs/GaAs heterostructure thyristors with a thick $p$-base (8 $\mu$m)

    Fizika i Tekhnika Poluprovodnikov, 59:10 (2025),  629–634
  2. Tunable quantum cascade laser for methane concentration measurement

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:22 (2025),  66–70
  3. Sources of high-power laser pulses of sub-nanosecond duration based on thyristor switch-laser diode structures for the 1500nm spectral range

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:17 (2025),  49–52
  4. Sources of high-power laser pulses at a wavelength of 1550 nm based on thyristor switch-laser designs

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:16 (2025),  21–25
  5. Compact high-power nanosecond-duration laser pulse sources (940 nm) based on “semiconductor laser – thyristor switch” vertical stacks

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:11 (2025),  7–10
  6. Analysis of TEM image of quantum cascade laser heterostructure grown by metalorganic vapour-phase epitaxy

    Fizika i Tekhnika Poluprovodnikov, 58:4 (2024),  179–184
  7. Hybrid stacks of thyristor switch – semiconductor laser based on AlInGaAsP/InP heterostructures for high-power pulsed laser sources (1400–1500 nm)

    Fizika i Tekhnika Poluprovodnikov, 58:3 (2024),  165–170
  8. Low-voltage current switches based on AlInGaAsP/InP thyristor heterostructures for nanosecond pulsed laser emitters (1.5 $\mu$m)

    Fizika i Tekhnika Poluprovodnikov, 58:3 (2024),  161–164
  9. The effect of the cavity length on the output optical power of semiconductor laser-thyristors based on AlGaAs/GaAs/InGaAs heterostructures

    Fizika i Tekhnika Poluprovodnikov, 58:2 (2024),  96–105
  10. High-power tunable quantum-cascade laser

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:22 (2024),  65–68
  11. Thyristor switches based on hetero and homostructures (Al)GaAs/GaAs for generating high-frequency nanosecond current pulses

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:4 (2024),  43–46
  12. Temperature dependence of the output optical power of semiconductor lasers–thyristors based on AlGaAs/GaAs/InGaAs heterostructures

    Kvantovaya Elektronika, 54:4 (2024),  218–223
  13. InGaAs/AlInAs/InP quantum-cascade lasers with reflective and antireflective optical coatings

    Kvantovaya Elektronika, 54:2 (2024),  100–103
  14. High-current low-voltage switches for nanosecond pulse durations based on thyristor (Al)GaAs/GaAs homo- and heterostructures

    Fizika i Tekhnika Poluprovodnikov, 57:8 (2023),  678–683
  15. Low-voltage InP heterostyristors for 50–150 ns current pulses generation

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 49:16 (2023),  29–32
  16. Features of high-power uni-traveling-carrier InGaAs/InP photodiodes

    Kvantovaya Elektronika, 53:11 (2023),  883–886
  17. High-power laser diode arrays based on (Al)GaAs/AlGaAs/GaAs and GaAsP/GaInP/GaAs quantum-well heterostructures

    Kvantovaya Elektronika, 53:8 (2023),  667–671
  18. Metal–dielectric mirror coatings for 4–5-μm quantum-cascade lasers

    Kvantovaya Elektronika, 53:8 (2023),  641–644
  19. New high-reliability optical transmission modules based on powerful superluminescent diodes in the spectral range 1.5 – 1.6 μm

    Kvantovaya Elektronika, 53:7 (2023),  561–564
  20. Dielectric highly reflective mirror coatings for quantum cascade lasers with 4 – 5 μm emission wavelength

    Kvantovaya Elektronika, 53:5 (2023),  370–373
  21. High power and repetition rate integral laser source (1060 nm) based on laser diode array and 2D multi-element opto-thyristor array as a high-speed current switch

    Kvantovaya Elektronika, 53:1 (2023),  11–16
  22. 3.8 THz quantum cascade laser grown by metalorganic vapor phase epitaxy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:10 (2022),  16–19
  23. Semiconductor lasers with improved radiation characteristics

    Kvantovaya Elektronika, 52:12 (2022),  1079–1087
  24. 1064-nm tunable single-frequency semiconductor laser module

    Kvantovaya Elektronika, 52:9 (2022),  775–778
  25. InGaAs/InP PIN photodiode for optical receivers in pulsed-laser range finding systems

    Kvantovaya Elektronika, 52:7 (2022),  671–675
  26. Compact superluminescent AlGaInAs/InP strain-compensated quantum-well diodes for fibre-optic gyroscopes

    Kvantovaya Elektronika, 52:6 (2022),  577–579
  27. Improvement of the current–voltage performance of broadened asymmetric waveguide InGaAs/AlGaAs/GaAs semiconductor lasers (λ = 940–980 nm)

    Kvantovaya Elektronika, 52:2 (2022),  179–181
  28. High-power mesa-stripe semiconductor lasers (910 nm) with an ultra-wide emitting aperture based on tunnel-coupled InGaAs/AlGaAs/GaAs heterostructures

    Kvantovaya Elektronika, 52:2 (2022),  174–178
  29. Turn on process spatial dynamics of a thyristor laser (905nm) based on an AlGaAs/InGaAs/GaAs heterostructure

    Fizika i Tekhnika Poluprovodnikov, 55:5 (2021),  466–472
  30. Heterostructures of quantum-cascade lasers with nonselective overgrowth by metalorganic vapour phase epitaxy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:24 (2021),  46–50
  31. High-power pulsed hybrid semiconductor lasers emitting in the wavelength range 900–920 nm

    Kvantovaya Elektronika, 51:10 (2021),  912–914
  32. High-power AlGaInAs/InP semiconductor lasers with an ultra-narrow waveguide emitting in the spectral range 1.9–2.0 μm

    Kvantovaya Elektronika, 51:10 (2021),  909–911
  33. InGaAs/AlGaAs/GaAs semiconductor lasers ($\lambda$ = 900–920 nm) with broadened asymmetric waveguides and improved current–voltage characteristics

    Kvantovaya Elektronika, 51:10 (2021),  905–908
  34. Comparison of AlGaInAs/InP semiconductor lasers (λ = 1450–1500 nm) with ultra-narrow and strongly asymmetric waveguides

    Kvantovaya Elektronika, 51:4 (2021),  283–286
  35. Semiconductor AlGaInAs/InP lasers (λ = 1450 – 1500 nm) with a strongly asymmetric waveguide

    Kvantovaya Elektronika, 51:2 (2021),  133–136
  36. Experimental technique for studying optical absorption in waveguide layers of semiconductor laser heterostructures

    Kvantovaya Elektronika, 51:2 (2021),  124–128
  37. AlGaInAs/InP semiconductor lasers with an ultra-narrow waveguide and an increased electron barrier

    Kvantovaya Elektronika, 50:12 (2020),  1123–1125
  38. Triple integrated laser–thyristor

    Kvantovaya Elektronika, 50:11 (2020),  1001–1003
  39. Superluminescent diodes in the spectral range of 1.5–1.6 μm based on strain-compensated AlGaInAs/InP quantum wells

    Kvantovaya Elektronika, 50:9 (2020),  830–833
  40. 1.5 – 1.6 μm semiconductor lasers with an asymmetric periodic optically coupled waveguide

    Kvantovaya Elektronika, 50:6 (2020),  600–602
  41. The influence of waveguide doping on the output characteristics of AlGaAs/GaAs lasers

    Kvantovaya Elektronika, 50:5 (2020),  489–492
  42. Experimental studies of 1.5–1.6 μm high-power single-frequency semiconductor lasers

    Kvantovaya Elektronika, 50:2 (2020),  143–146
  43. Experimental studies of the on-state propagation dynamics of low-voltage laser-thyristors based on AlGaAs/InGaAs/GaAs heterostructures

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:8 (2019),  7–11
  44. Double integrated laser-thyristor

    Kvantovaya Elektronika, 49:11 (2019),  1011–1013
  45. Superluminescent diodes based on asymmetric double-quantum-well heterostructures

    Kvantovaya Elektronika, 49:10 (2019),  931–935
  46. Continuous-wave laser diodes based on epitaxially integrated InGaAs/AlGaAs/GaAs heterostructures

    Kvantovaya Elektronika, 49:10 (2019),  905–908
  47. Superluminescent diodes of the 770–790-nm range based on semiconductor nanostructures with narrow quantum wells

    Kvantovaya Elektronika, 49:9 (2019),  810–813
  48. Effect of (Al)GaAs/AlGaAs quantum confinement region parameters on the threshold current density of laser diodes

    Kvantovaya Elektronika, 49:6 (2019),  529–534
  49. AlGaInAs/InP semiconductor lasers with an increased electron barrier

    Kvantovaya Elektronika, 49:6 (2019),  519–521
  50. Pulsed laser module based on a high-power semiconductor laser for the spectral range 1500–1600 nm

    Kvantovaya Elektronika, 49:5 (2019),  488–492
  51. THz stimulated emission from simple superlattice in positive differential conductivity region

    Fizika i Tekhnika Poluprovodnikov, 52:4 (2018),  463
  52. Compact laser diode array based on epitaxially integrated AlGaAs/GaAs heterostructures

    Kvantovaya Elektronika, 48:11 (2018),  993–995
  53. Effect of the waveguide layer thickness on output characteristics of semiconductor lasers with emission wavelength from 1500 to 1600 nm

    Kvantovaya Elektronika, 48:3 (2018),  197–200
  54. Laser diode arrays based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 62%

    Kvantovaya Elektronika, 47:8 (2017),  693–695
  55. Laser diode bars based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 70%

    Kvantovaya Elektronika, 47:4 (2017),  291–293
  56. Semiconductor AlGaInAs/InP lasers with ultra-narrow waveguides

    Kvantovaya Elektronika, 47:3 (2017),  272–274
  57. Quantum cascade laser based on GaAs/Al0.45Ga0.55As heteropair grown by MOCVD

    Kvantovaya Elektronika, 46:5 (2016),  447–450
  58. Stimulated emission at transitions between Wannier–Stark ladders in semiconductor superlattices

    Pis'ma v Zh. Èksper. Teoret. Fiz., 102:4 (2015),  235–239
  59. Semiconductor lasers with a continuous tuning range above 100 nm in the nearest IR spectral region

    Kvantovaya Elektronika, 45:8 (2015),  697–700
  60. Formation conditions for InAs/GaAs quantum dot arrays by droplet epitaxy under MOVPE conditions

    Zhurnal Tekhnicheskoi Fiziki, 84:1 (2014),  79–85
  61. On the control efficiency of a high-power laser thyristor emitting in the 890–910 nm spectral range

    Fizika i Tekhnika Poluprovodnikov, 48:5 (2014),  716–718
  62. Laser emitters ($\lambda$ = 808 nm) based on AlGaAs/GaAs heterostructures

    Fizika i Tekhnika Poluprovodnikov, 48:1 (2014),  120–124
  63. Laser-diode arrays based on epitaxial integrated heterostructures with increased power and brightness of the pulse emission

    Fizika i Tekhnika Poluprovodnikov, 48:1 (2014),  104–108
  64. Broadband semiconductor optical amplifiers of the spectral range 750 – 1100 nm

    Kvantovaya Elektronika, 43:11 (2013),  994–998
  65. AlGaAs/GaAs laser diode bars (λ = 808 nm) with improved thermal stability

    Kvantovaya Elektronika, 43:10 (2013),  895–897
  66. 1.5 to 1.6 μm pulsed laser diode bars based on epitaxially stacked AlGaInAs/InP heterostructures

    Kvantovaya Elektronika, 43:9 (2013),  822–823
  67. High-power pulsed laser diodes emitting in the range 1.5 – 1.6 μm

    Kvantovaya Elektronika, 43:9 (2013),  819–821
  68. Broadband superluminescent diodes with bell-shaped spectra emitting in the range from 800 to 900 nm

    Kvantovaya Elektronika, 43:8 (2013),  751–756
  69. High-power cw laser bars of the 750 – 790-nm wavelength range

    Kvantovaya Elektronika, 43:6 (2013),  509–511
  70. High-power 850–870-nm pulsed lasers based on heterostructures with narrow and wide waveguides

    Kvantovaya Elektronika, 43:5 (2013),  407–409
  71. Nearest-IR superluminescent diodes with a 100-nm spectral width

    Kvantovaya Elektronika, 42:11 (2012),  961–963
  72. Laser diode bars based on strain-compensated AlGaPAs/GaAs heterostructures

    Kvantovaya Elektronika, 42:1 (2012),  15–17
  73. Laser diodes with several emitting regions ($\lambda$ = 800–1100 nm) on the basis of epitaxially integrated heterostructures

    Fizika i Tekhnika Poluprovodnikov, 45:4 (2011),  528–534
  74. Broadband superluminescent diodes and semiconductor optical amplifiers for the spectral range 750 — 800 nm

    Kvantovaya Elektronika, 41:8 (2011),  677–680
  75. Temperature dependence of the threshold current density and external differential quantum efficiency of semiconductor lasers ($\lambda$ = 900–920 nm)

    Fizika i Tekhnika Poluprovodnikov, 44:10 (2010),  1417–1421
  76. The temperature dependence of internal optical losses in semiconductor lasers ($\lambda$ = 900–920 nm)

    Fizika i Tekhnika Poluprovodnikov, 44:10 (2010),  1411–1416
  77. Two-band lasing in epitaxially stacked tunnel-junction semiconductor lasers

    Fizika i Tekhnika Poluprovodnikov, 44:6 (2010),  833–836
  78. A study of epitaxially stacked tunnel-junction semiconductor lasers grown by MOCVD

    Fizika i Tekhnika Poluprovodnikov, 44:2 (2010),  251–255
  79. Physicochemical aspects of quantum dot array formation in the InAs/GaAs system by droplet epitaxy under MOVPE conditions

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 36:15 (2010),  82–88
  80. Dual-wavelength laser diodes based on epitaxially stacked heterostructures

    Kvantovaya Elektronika, 40:8 (2010),  697–699
  81. 808-nm laser diode bars based on epitaxially stacked double heterostructures

    Kvantovaya Elektronika, 40:8 (2010),  682–684
  82. High-power laser diodes based on triple integrated InGaAs/AlGaAs/GaAs structures emitting at 0.9 μm

    Kvantovaya Elektronika, 39:8 (2009),  723–726
  83. High-power single-mode laser diodes based on carbon-doped quantum-well InGaAs/AlGaAs heterostructures

    Kvantovaya Elektronika, 39:1 (2009),  18–20
  84. Double integrated nanostructures for pulsed 0.9-μm laser diodes

    Kvantovaya Elektronika, 38:11 (2008),  989–992

  85. Quantum cascade lasers for the 8-$\mu$m spectral range: technology, design, and analysis

    UFN, 194:1 (2024),  98–105


© Steklov Math. Inst. of RAS, 2026