RUS  ENG
Full version
PEOPLE

Aranson Samuil Khaimovich

Publications in Math-Net.Ru

  1. Closed cross-sections of irrational flows on surfaces

    Mat. Sb., 197:2 (2006),  35–56
  2. Nonlocal Properties of Analytic Flows on Closed Orientable Surfaces

    Trudy Mat. Inst. Steklova, 244 (2004),  6–22
  3. On asymptotic directions of semitrajectories of analytic flows on surfaces

    Uspekhi Mat. Nauk, 57:6(348) (2002),  169–170
  4. Two-dimensional basic sets of structurally stable diffeomorphisms of three-dimensional manifolds

    Uspekhi Mat. Nauk, 56:3(339) (2001),  153–154
  5. Properties of the Absolute That Affect Smoothness of Flows on Closed Surfaces

    Mat. Zametki, 68:6 (2000),  819–829
  6. Two-dimensional basic sets of structurally stable diffeomorphisms of three-dimensional manifolds

    Uspekhi Mat. Nauk, 55:6(336) (2000),  123–124
  7. Transitive and supertransitive flows on closed nonorientable surfaces

    Mat. Zametki, 63:4 (1998),  625–628
  8. Strengthening the $C^r$-closing lemma for dynamical systems and foliations on the torus

    Mat. Zametki, 61:3 (1997),  323–331
  9. On continuity of geodesic frameworks of flows on surfaces

    Mat. Sb., 188:7 (1997),  3–22
  10. Classification of Cherry transformations on a circle and of Cherry flows on a torus

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 4,  7–17
  11. On the geometry and topology of flows and foliations on surfaces and the Anosov problem

    Mat. Sb., 186:8 (1995),  25–66
  12. Cherry flows on a two-dimensional sphere

    Uspekhi Mat. Nauk, 49:5(299) (1994),  167–168
  13. On the structure of quasiminimal sets of foliations on surfaces

    Mat. Sb., 185:8 (1994),  31–62
  14. Quasiminimal sets of foliations, and one-dimensional basic sets of $A$-diffeomorphisms of surfaces

    Dokl. Akad. Nauk, 330:3 (1993),  280–281
  15. Local structure and smoothness on a torus that obstructs quasiminimalities

    Differ. Uravn., 29:6 (1993),  923–926
  16. Trajectories covering flows for branched coverings of the sphere and projective plane

    Mat. Zametki, 53:5 (1993),  3–13
  17. Topology of vector fields, foliations with singularities, and homeomorphisms with invariant foliations on closed surfaces

    Trudy Mat. Inst. Steklov., 193 (1992),  15–21
  18. Dynamical systems with hyperbolic behavior

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 66 (1991),  5–242
  19. The problem of gray boxes

    Mat. Zametki, 47:1 (1990),  3–14
  20. Topological invariants of vector fields in a disc on a plane with limit sets of Cantor type

    Uspekhi Mat. Nauk, 45:4(274) (1990),  139–140
  21. The topological classification of cascades on closed two-dimensional manifolds

    Uspekhi Mat. Nauk, 45:1(271) (1990),  3–32
  22. On the $C^r$-closing lemma on surfaces

    Uspekhi Mat. Nauk, 43:5(263) (1988),  173–174
  23. On the non-denseness of fields of finite degree of non-robustness in the space of non-robust vector fields on closed two-dimensional manifolds

    Uspekhi Mat. Nauk, 43:1(259) (1988),  191–192
  24. On generic bifurcations of diffeomorphisms of a circle

    Differ. Uravn., 23:3 (1987),  388–394
  25. Topological structure of Cherry flows on the torus

    Funktsional. Anal. i Prilozhen., 20:1 (1986),  62–63
  26. Topological equivalence of fiberings with singularities and homeomorphisms with invariant fiberings on two-dimensional manifolds

    Uspekhi Mat. Nauk, 41:3(249) (1986),  167–168
  27. Topological classification of flows on closed two-dimensional manifolds

    Uspekhi Mat. Nauk, 41:1(247) (1986),  149–169
  28. Smooth dynamical systems. Chapter 4

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 1 (1985),  229–237
  29. The relation between topological and smooth properties of transformations of a circle without periodic points and with a finite number of critical points

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 8,  64–67
  30. Homeomorphisms with minimal entropy on two-dimensional manifolds

    Uspekhi Mat. Nauk, 36:2(218) (1981),  175–176
  31. On the representation of minimal sets of currents on two-dimensional manifolds by geodesics

    Izv. Akad. Nauk SSSR Ser. Mat., 42:1 (1978),  104–129
  32. The topological classification of singular dynamical systems on the torus

    Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 5,  104–107
  33. On some arithmetic properties of dynamical systems on two-dimensional manifolds

    Dokl. Akad. Nauk SSSR, 222:2 (1975),  265–268
  34. The topological equivalence of minimal sets of dynamical systems on two-dimensional manifolds

    Uspekhi Mat. Nauk, 28:4(172) (1973),  205–206
  35. On some invariants of dynamical systems on two-dimensional manifolds (necessary and sufficient conditions for the topological equivalence of transitive dynamical systems)

    Mat. Sb. (N.S.), 90(132):3 (1973),  372–402
  36. Regular components of homeomorphisms of the $n$-dimensional sphere

    Mat. Sb. (N.S.), 85(127):1(5) (1971),  3–17
  37. Trajectories on nonorientable two-dimensional manifolds

    Mat. Sb. (N.S.), 80(122):3(11) (1969),  314–333
  38. The absence of nonclosed Poisson-stable semitrajectories and trajectories doubly asymptotic to a double limit cycle for dynamical systems of the first degree of structural instability on orientable two-dimensional manifolds

    Mat. Sb. (N.S.), 76(118):2 (1968),  214–230
  39. Systems on a torus with structural instability of the first degree

    Dokl. Akad. Nauk SSSR, 164:5 (1965),  959–962
  40. Rotation of a field in a theorem on the theory of structurally stable dynamical systems on a torus

    Dokl. Akad. Nauk SSSR, 156:5 (1964),  995–998


© Steklov Math. Inst. of RAS, 2026