RUS  ENG
Full version
PEOPLE

Gur'yanov Aleksei Nikolaevich

Publications in Math-Net.Ru

  1. Clad-pumped bismuth fibre laser emitting in the wavelength range from 1.3 to 1.4 μm

    Kvantovaya Elektronika, 52:8 (2022),  681–684
  2. Optimisation of the efficiency of tapered erbium-doped optical fibre

    Kvantovaya Elektronika, 51:12 (2021),  1056–1060
  3. Transient processes and cross talk in an O-band bismuth-doped fibre amplifier

    Kvantovaya Elektronika, 51:7 (2021),  630–634
  4. Optical fibre with an offset core for SBS suppression

    Kvantovaya Elektronika, 51:3 (2021),  228–231
  5. Spectrally selective fundamental core mode suppression in optical fibre containing absorbing rods

    Kvantovaya Elektronika, 50:12 (2020),  1083–1087
  6. Prediction of radiation-induced light absorption in optical fibers with an undoped silica core for space applications

    Zhurnal Tekhnicheskoi Fiziki, 89:5 (2019),  752–758
  7. All-fibre single-mode small-signal amplifier operating near 0.976 μm

    Kvantovaya Elektronika, 49:10 (2019),  919–924
  8. New radiation colour centre in germanosilicate glass fibres

    Kvantovaya Elektronika, 48:12 (2018),  1143–1146
  9. 25 Gb s-1 data transmission using a bismuth-doped fibre amplifier with a gain peak shifted to 1300 nm

    Kvantovaya Elektronika, 48:11 (2018),  989–992
  10. Use of rare-earth elements to achieve wavelength-selective absorption in high-power fibre lasers

    Kvantovaya Elektronika, 48:8 (2018),  733–737
  11. Radiation-induced absorption in bismuth-doped germanosilicate fibres

    Kvantovaya Elektronika, 47:12 (2017),  1120–1124
  12. Factors reducing the efficiency of ytterbium fibre lasers and amplifiers operating near 0.98 μm

    Kvantovaya Elektronika, 47:12 (2017),  1109–1114
  13. Optical properties of heavily ytterbium- and fluorine-doped aluminosilicate core fibres

    Kvantovaya Elektronika, 47:12 (2017),  1099–1104
  14. Continuous-wave bismuth fibre laser tunable from 1.65 to 1.8 μm

    Kvantovaya Elektronika, 47:12 (2017),  1091–1093
  15. Bismuth-doped fibre laser continuously tunable within the range from 1.36 to 1.51 μm

    Kvantovaya Elektronika, 46:12 (2016),  1068–1070
  16. Bismuth/erbium-doped germanosilicate fibre amplifier with a bandwidth above 200 nm

    Kvantovaya Elektronika, 46:11 (2016),  973–975
  17. Superluminescent bismuth-doped fibre IR source for the range 1700 – 1750 nm

    Kvantovaya Elektronika, 46:9 (2016),  787–789
  18. Quasi-single-mode hybrid fibre with anomalous dispersion in the 1 μm range

    Kvantovaya Elektronika, 46:8 (2016),  738–742
  19. Anti-Stokes luminescence in bismuth-doped aluminoand phosphosilicate fibres under two-step IR excitation

    Kvantovaya Elektronika, 46:7 (2016),  612–616
  20. Optimisation of an acoustically antiguiding structure for raising the stimulated Brillouin scattering threshold in optical fibres

    Kvantovaya Elektronika, 46:5 (2016),  468–472
  21. Bismuth-doped fibre amplifier operating between 1600 and 1800 nm

    Kvantovaya Elektronika, 45:12 (2015),  1083–1085
  22. Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses

    Kvantovaya Elektronika, 45:5 (2015),  443–450
  23. Luminescence properties of IR-emitting bismuth centres in SiO2-based glasses in the UV to near-IR spectral region

    Kvantovaya Elektronika, 45:1 (2015),  59–65
  24. Charge-transfer state excitation as the main mechanism of the photodarkening process in ytterbium-doped aluminosilicate fibres

    Kvantovaya Elektronika, 44:12 (2014),  1129–1135
  25. Influence of pump wavelength and core size on stimulated Brillouin scattering spectra of acoustically antiguiding optical fibres

    Kvantovaya Elektronika, 44:11 (2014),  1043–1047
  26. Superfluorescent 1.34 μm bismuth-doped fibre source

    Kvantovaya Elektronika, 44:7 (2014),  700–702
  27. A new bismuth-doped fibre laser, emitting in the range 1625 – 1775 nm

    Kvantovaya Elektronika, 44:6 (2014),  503–504
  28. Submicrojoule femtosecond erbium-doped fibre laser for the generation of dispersive waves at submicron wavelengths

    Kvantovaya Elektronika, 44:5 (2014),  458–464
  29. Fibre laser based on tellurium-doped active fibre

    Kvantovaya Elektronika, 44:2 (2014),  95–97
  30. Role of oxygen hole centres in the photodarkening of ytterbium-doped phosphosilicate fibre

    Kvantovaya Elektronika, 43:11 (2013),  1037–1042
  31. All-fibre high-energy chirped-pulse laser in the 1 μm range

    Kvantovaya Elektronika, 43:3 (2013),  252–255
  32. Optical properties of bismuth-doped silica fibres in the temperature range 300 — 1500 K

    Kvantovaya Elektronika, 42:9 (2012),  762–769
  33. High-performace cladding-pumped erbium-doped fibre laser and amplifier

    Kvantovaya Elektronika, 42:5 (2012),  432–436
  34. IR luminescence of tellurium-doped silica-based optical fibre

    Kvantovaya Elektronika, 42:3 (2012),  189–191
  35. Silica-core photonic bandgap fibres: Properties and a criterion for single-mode operation

    Kvantovaya Elektronika, 42:2 (2012),  165–169
  36. Luminescence and photoinduced absorption in ytterbium-doped optical fibres

    Kvantovaya Elektronika, 41:12 (2011),  1073–1079
  37. Angular distribution of light scattered from heavily doped silica fibres

    Kvantovaya Elektronika, 41:10 (2011),  917–923
  38. Bismuth-doped germanosilicate fibre laser with 20-W output power at 1460 nm

    Kvantovaya Elektronika, 41:7 (2011),  581–583
  39. Photonic bandgap single-mode optical fibre with ytterbium-doped silica glass core

    Kvantovaya Elektronika, 40:12 (2010),  1137–1140
  40. Optical fibre with a germanate glass core for lasing near 2 μm

    Kvantovaya Elektronika, 40:12 (2010),  1103–1105
  41. Erbium-doped aluminophosphosilicate optical fibres

    Kvantovaya Elektronika, 40:7 (2010),  633–638
  42. Bismuth-doped fibre amplifier for the range 1300 — 1340 nm

    Kvantovaya Elektronika, 39:12 (2009),  1099–1101
  43. Optical properties of fibres with aluminophosphosilicate glass cores

    Kvantovaya Elektronika, 39:9 (2009),  857–862
  44. Bismuth-doped telecommunication fibres for lasers and amplifiers in the 1400 — 1500-nm region

    Kvantovaya Elektronika, 39:6 (2009),  583–584
  45. Bi-doped fibre lasers operating in the range 1470 — 1550 nm

    Kvantovaya Elektronika, 39:4 (2009),  299–301
  46. Bi-doped fibre lasers and amplifiers emitting in a spectral region of 1.3 μm

    Kvantovaya Elektronika, 38:7 (2008),  615–617
  47. Radiation-resistant erbium-doped silica fibre

    Kvantovaya Elektronika, 37:10 (2007),  946–949
  48. Photoinduced absorption and refractive-index induction in phosphosilicate fibres by radiation at 193 nm

    Kvantovaya Elektronika, 37:4 (2007),  388–392
  49. Development and study of Bragg fibres with a large mode field and low optical losses

    Kvantovaya Elektronika, 36:7 (2006),  581–586
  50. Study of the radiation scattering indicatrix in fibres heavily doped with germanium oxide

    Kvantovaya Elektronika, 36:5 (2006),  464–469
  51. Photosensitivity of heavily GeO2-doped fibres in the near UV range between 300 and 350 nm

    Kvantovaya Elektronika, 36:2 (2006),  145–148
  52. CW bismuth fibre laser

    Kvantovaya Elektronika, 35:12 (2005),  1083–1084
  53. 7-W single-mode thulium-doped fibre laser pumped at 1230 nm

    Kvantovaya Elektronika, 35:7 (2005),  586–590
  54. Amplifying properties of heavily erbium-doped active fibres

    Kvantovaya Elektronika, 35:6 (2005),  559–562
  55. Raman fibre lasers based on heavily GeO2-doped fibres

    Kvantovaya Elektronika, 35:5 (2005),  435–441
  56. Yb-, Er–Yb-, and Nd-doped fibre lasers based on multi-element first cladding fibres

    Kvantovaya Elektronika, 35:4 (2005),  328–334
  57. Raman fibre lasers emitting at a wavelength above 2 μm

    Kvantovaya Elektronika, 34:8 (2004),  695–697
  58. Optical losses in single-mode and multimode fibres heavily doped with GeO2 and P2O5

    Kvantovaya Elektronika, 34:3 (2004),  241–246
  59. Efficient 0.9-μm neodymium-doped single-mode fibre laser

    Kvantovaya Elektronika, 33:12 (2003),  1035–1037
  60. Mechanisms of optical losses in fibres with a high concentration of germanium dioxide

    Kvantovaya Elektronika, 33:7 (2003),  633–638
  61. Photosensitivity of germanosilicate fibres and preforms doped with nitrogen inhomogeneously over the cross section

    Kvantovaya Elektronika, 33:3 (2003),  275–280
  62. Absorption and luminescence properties of Cr4+-doped silica fibres

    Kvantovaya Elektronika, 31:11 (2001),  996–998
  63. High-power erbium-doped fibre amplifier pumped by a phosphosilicate fibre Raman converter

    Kvantovaya Elektronika, 31:9 (2001),  801–803
  64. Single-mode fibre with an additional ring fibre for two-channel communication and special applications

    Kvantovaya Elektronika, 31:8 (2001),  733–739
  65. Photorefractive effect and photoinduced quadratic nonlinear susceptibility in germanosilicate fibres fabricated in nitrogen and helium atmospheres by the MCVD technique

    Kvantovaya Elektronika, 30:9 (2000),  815–820
  66. High-power fibre Raman lasers emitting in the 1.22 — 1.34-μm range

    Kvantovaya Elektronika, 30:9 (2000),  791–793
  67. Continuous-wave highly efficient phosphosilicate fibre-based Raman laser (λ = 1.24 μm)

    Kvantovaya Elektronika, 29:2 (1999),  97–100
  68. Highly efficient cladding-pumped fibre laser based on an ytterbium-doped optical fibre and a fibre Bragg grating

    Kvantovaya Elektronika, 27:3 (1999),  239–240
  69. High-power single-mode neodymium fibre laser

    Kvantovaya Elektronika, 24:1 (1997),  3–4
  70. Large-aperture low-loss fibre-optic Raman amplifier of 1.3 μm signals with 30 dB gain

    Kvantovaya Elektronika, 22:7 (1995),  643–644
  71. Raman fibre-optic amplifier of signals at the wavelength of 1.3 μm

    Kvantovaya Elektronika, 21:9 (1994),  807–809
  72. Two-layer chalcogenide-glass optical fibers with optical losses below 30 dB/km

    Kvantovaya Elektronika, 20:2 (1993),  109–110
  73. Investigation of the spectral dependences of some of the polarization characteristics of fiber waveguides with an elliptic stress-inducing cladding and a circular core

    Kvantovaya Elektronika, 18:1 (1991),  134–138
  74. Anisotropic waveguides with an elliptic stress-inducing cladding and a circular core

    Kvantovaya Elektronika, 17:10 (1990),  1363–1368
  75. New method for fabrication of fiber waveguides doped with rare-earth elements

    Kvantovaya Elektronika, 17:7 (1990),  813–814
  76. Single-mode fiber waveguides with the point of zero chromatic dispersion displaced to the wavelength of 1.55 μm

    Kvantovaya Elektronika, 17:3 (1990),  266–267
  77. Polarization characteristics of anisotropic single-mode fiber waveguides

    Kvantovaya Elektronika, 17:1 (1990),  84–86
  78. Frost-resistant fiber-optic cable

    Kvantovaya Elektronika, 15:1 (1988),  232–235
  79. Single-mode fiber waveguides with losses below 1 dB/km

    Kvantovaya Elektronika, 14:6 (1987),  1309–1310
  80. Wide-band multimode graded fiber waveguides

    Kvantovaya Elektronika, 14:6 (1987),  1152–1154
  81. Investigation of single-frequency semiconductor lasers with a fiber Michelson interferometer

    Kvantovaya Elektronika, 14:4 (1987),  871–874
  82. Multichannel anisotropic single-mode fiber waveguide for fiber-optic sensors

    Kvantovaya Elektronika, 14:3 (1987),  609–611
  83. Polarization properties of the supermode tri-layer ring-type light guide

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 12:8 (1986),  457–461
  84. Experimental investigation of cross talk in two-channel fiber waveguides

    Kvantovaya Elektronika, 13:2 (1986),  363–367
  85. Gyroscopes based on depolarized supermode light guides

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 11:6 (1985),  321–325
  86. Influence of the width of the radiation spectrum on the polarization characteristics of single-mode fiber waveguides

    Kvantovaya Elektronika, 12:11 (1985),  2226–2229
  87. Frost-resistant fiber optic modules

    Kvantovaya Elektronika, 12:9 (1985),  1951–1954
  88. Low-loss directional couplers utilizing single-mode fiber-optic waveguides

    Kvantovaya Elektronika, 12:9 (1985),  1873–1880
  89. Bending losses in single-mode fiber waveguides

    Kvantovaya Elektronika, 12:5 (1985),  1076–1078
  90. Influence of primary polymer coatings on low-temperature optical losses in fiber waveguides

    Kvantovaya Elektronika, 12:4 (1985),  839–841
  91. Anti-Stokes light scattering in glass fiber waveguides

    Kvantovaya Elektronika, 12:4 (1985),  799–802
  92. Fiber waveguide with a fluorine-doped cladding and a pure quartz glass core

    Kvantovaya Elektronika, 12:3 (1985),  634–636
  93. Influence of the coherence length of radiation on phase noise in a fiber-optic rotation sensor

    Kvantovaya Elektronika, 11:7 (1984),  1469–1471
  94. Influence of water on the mechanical strength of fiber waveguides

    Kvantovaya Elektronika, 11:7 (1984),  1467–1469
  95. Graded fiber waveguide with extremely low losses

    Kvantovaya Elektronika, 11:4 (1984),  646–647
  96. Low-loss two-channel fiber-optic waveguide

    Kvantovaya Elektronika, 11:1 (1984),  73–76
  97. High-sensitive fiber-optic rotating transducer

    Dokl. Akad. Nauk SSSR, 269:2 (1983),  334–336
  98. Fiber-optic communication line with multimode waveguides for data transfer over distances up to 8 km

    Kvantovaya Elektronika, 10:12 (1983),  2487–2490
  99. Some characteristics of the polarization properties of single-mode W-type waveguides

    Kvantovaya Elektronika, 10:8 (1983),  1598–1602
  100. Stimulated four-photon mixing in glass fiber waveguides in the spectral range 0.4–1.8 μ

    Kvantovaya Elektronika, 10:5 (1983),  1056–1059
  101. Luminescence parameters in germanium dioxide-doped silica

    Dokl. Akad. Nauk SSSR, 264:1 (1982),  90–93
  102. Optoacoustic characteristics of single-mode fiber waveguides

    Kvantovaya Elektronika, 9:12 (1982),  2542–2544
  103. Multichannel duplex fiber-optic communication line operating at the wavelength of ~1.3 μ

    Kvantovaya Elektronika, 9:8 (1982),  1698–1700
  104. High-strength fiber waveguides made by chemical vapor deposition method

    Kvantovaya Elektronika, 9:7 (1982),  1506–1509
  105. Polarization properties of few-mode glass fiber waveguides with noncircuiar cores

    Kvantovaya Elektronika, 9:4 (1982),  810–812
  106. Losses due to microbending and bending in single-mode two- and three-layer W-type waveguides

    Kvantovaya Elektronika, 8:11 (1981),  2507–2510
  107. Polarization properties of single-mode fiber-optic waveguides with weak birefringence

    Kvantovaya Elektronika, 8:11 (1981),  2473–2478
  108. Characteristics of stimulated Raman light scattering in SiO2+GeO2 glass-fiber optical waveguides

    Kvantovaya Elektronika, 8:11 (1981),  2383–2389
  109. Simple method for determining the parameters of singlemode fiber-optic waveguides

    Kvantovaya Elektronika, 8:8 (1981),  1802–1807
  110. Single-mode low-loss W-type fiber waveguide

    Kvantovaya Elektronika, 8:6 (1981),  1310–1312
  111. Three-layer optical waveguides of the ring type

    Kvantovaya Elektronika, 8:2 (1981),  347–350
  112. Investigation of the temperature dependence of the optical losses in low-loss fiber-optic waveguides

    Kvantovaya Elektronika, 7:10 (1980),  2210–2213
  113. Single-mode low-loss fiber waveguide

    Kvantovaya Elektronika, 7:8 (1980),  1823–1825
  114. Microbending losses in fiber waveguides and fiber-optic cables

    Kvantovaya Elektronika, 7:1 (1980),  217–219
  115. Load-bearing optical cable

    Kvantovaya Elektronika, 6:12 (1979),  2657–2659
  116. Investigation of the structure of preform materials and fiber-optical waveguides utilizing quartz glass doped with germanium and boron

    Kvantovaya Elektronika, 6:10 (1979),  2109–2116
  117. Radiation-optical stability of lowloss glass-fiber waveguides

    Kvantovaya Elektronika, 6:6 (1979),  1310–1319
  118. Optical fiber waveguides with a large-diameter core and low optical losses

    Kvantovaya Elektronika, 6:5 (1979),  1084–1085
  119. Fiber-optical long-distance telecommunication line operating at the wavelength of 1.3 μ

    Kvantovaya Elektronika, 5:11 (1978),  2486–2488
  120. Radiation-optical stability of low-loss glass-fiber waveguides

    Kvantovaya Elektronika, 5:11 (1978),  2484–2486
  121. Low-loss fiber-optical cable

    Kvantovaya Elektronika, 5:3 (1978),  700–703
  122. Material dispersion in quartz glass fiber waveguides

    Kvantovaya Elektronika, 5:3 (1978),  695–698
  123. Radiation losses in glass fiber waveguides due to variations of the waveguide cross section

    Kvantovaya Elektronika, 4:11 (1977),  2467–2468
  124. Investigation of optical-fiber systems for communication between computer units

    Kvantovaya Elektronika, 4:11 (1977),  2456–2459
  125. Glass-fiber waveguide with losses below 1 dB/km

    Kvantovaya Elektronika, 4:9 (1977),  2041–2043
  126. Investigation of optical losses in glass-fiber waveguides

    Kvantovaya Elektronika, 4:4 (1977),  937–941
  127. Low-loss fiber guide with SiO2+GeO2 core and borosilicate cladding

    Kvantovaya Elektronika, 3:11 (1976),  2483–2485
  128. Graded-index glass fiber optical waveguide

    Kvantovaya Elektronika, 3:3 (1976),  667–669
  129. Low-loss glass-fiber waveguides

    Kvantovaya Elektronika, 2:9 (1975),  2103–2105

  130. In memory of Evgeny Mikhailovich Dianov

    Kvantovaya Elektronika, 49:3 (2019),  298


© Steklov Math. Inst. of RAS, 2026