RUS  ENG
Full version
PEOPLE

Likhachev Mikhail Evgen'evich

Publications in Math-Net.Ru

  1. Generation of 30-femtosecond pulses with an energy of 6.3 nJ and an average power of 238 mW at 1.56-μm wavelength in an all-fiber two-stage nonlinear amplification scheme

    Kvantovaya Elektronika, 55:3 (2025),  146–153
  2. Threshold characteristics of the 1.56 → 2.84 μm Raman transformation in methane under broadband pumping by powerful frequency-modulated pulses of erbium fiber source

    Kvantovaya Elektronika, 53:5 (2023),  363–369
  3. Single-mode P2O5–F–SiO2 optical fibres with an optimised acoustic profile: Influence of the optical refractive index contrast and dopant content of the core on maximum SBS gain suppression

    Kvantovaya Elektronika, 52:11 (2022),  984–993
  4. Picosecond Raman fibre laser with a wavelength of 2.84 μm

    Kvantovaya Elektronika, 52:8 (2022),  685–694
  5. 1.56-to-2.84 μm SRS conversion of chirped pulses of a high-power erbium fibre laser in a methane-filled hollow-core revolver fibre

    Kvantovaya Elektronika, 52:3 (2022),  274–277
  6. Optimisation of the efficiency of tapered erbium-doped optical fibre

    Kvantovaya Elektronika, 51:12 (2021),  1056–1060
  7. Triple-clad optical fibre for pulse stretching

    Kvantovaya Elektronika, 51:10 (2021),  894–900
  8. Optical fibre with an offset core for SBS suppression

    Kvantovaya Elektronika, 51:3 (2021),  228–231
  9. Spectrally selective fundamental core mode suppression in optical fibre containing absorbing rods

    Kvantovaya Elektronika, 50:12 (2020),  1083–1087
  10. Tapered erbium-doped fibre laser system delivering 10 MW of peak power

    Kvantovaya Elektronika, 49:12 (2019),  1093–1099
  11. All-fibre single-mode small-signal amplifier operating near 0.976 μm

    Kvantovaya Elektronika, 49:10 (2019),  919–924
  12. Use of heavily doped germanosilicate fibres with a small core diameter in stretchers of ultrashort laser pulses at a wavelength of 1.03 μm

    Kvantovaya Elektronika, 49:8 (2019),  768–772
  13. 4.4-μm Raman generation with an average power above 1 W in silica revolver fibre

    Kvantovaya Elektronika, 48:12 (2018),  1084–1088
  14. Use of rare-earth elements to achieve wavelength-selective absorption in high-power fibre lasers

    Kvantovaya Elektronika, 48:8 (2018),  733–737
  15. Factors reducing the efficiency of ytterbium fibre lasers and amplifiers operating near 0.98 μm

    Kvantovaya Elektronika, 47:12 (2017),  1109–1114
  16. Optical properties of heavily ytterbium- and fluorine-doped aluminosilicate core fibres

    Kvantovaya Elektronika, 47:12 (2017),  1099–1104
  17. Mid-IR hollow-core silica fibre Raman lasers

    Kvantovaya Elektronika, 47:12 (2017),  1078–1082
  18. 4.4-μm Raman laser based on hollow-core silica fibre

    Kvantovaya Elektronika, 47:5 (2017),  491–494
  19. Stabilisation of a radiation wavelength of a nanosecond fibre laser by a passive nonlinear loop mirror

    Kvantovaya Elektronika, 46:12 (2016),  1089–1091
  20. Quasi-single-mode hybrid fibre with anomalous dispersion in the 1 μm range

    Kvantovaya Elektronika, 46:8 (2016),  738–742
  21. Optimisation of an acoustically antiguiding structure for raising the stimulated Brillouin scattering threshold in optical fibres

    Kvantovaya Elektronika, 46:5 (2016),  468–472
  22. Effect of temperature on the active properties of erbium-doped optical fibres

    Kvantovaya Elektronika, 46:3 (2016),  271–276
  23. Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses

    Kvantovaya Elektronika, 45:5 (2015),  443–450
  24. Charge-transfer state excitation as the main mechanism of the photodarkening process in ytterbium-doped aluminosilicate fibres

    Kvantovaya Elektronika, 44:12 (2014),  1129–1135
  25. Influence of pump wavelength and core size on stimulated Brillouin scattering spectra of acoustically antiguiding optical fibres

    Kvantovaya Elektronika, 44:11 (2014),  1043–1047
  26. Submicrojoule femtosecond erbium-doped fibre laser for the generation of dispersive waves at submicron wavelengths

    Kvantovaya Elektronika, 44:5 (2014),  458–464
  27. Role of oxygen hole centres in the photodarkening of ytterbium-doped phosphosilicate fibre

    Kvantovaya Elektronika, 43:11 (2013),  1037–1042
  28. All-fibre high-energy chirped-pulse laser in the 1 μm range

    Kvantovaya Elektronika, 43:3 (2013),  252–255
  29. High-performace cladding-pumped erbium-doped fibre laser and amplifier

    Kvantovaya Elektronika, 42:5 (2012),  432–436
  30. Luminescence and photoinduced absorption in ytterbium-doped optical fibres

    Kvantovaya Elektronika, 41:12 (2011),  1073–1079
  31. Angular distribution of light scattered from heavily doped silica fibres

    Kvantovaya Elektronika, 41:10 (2011),  917–923
  32. Experimental and theoretical study of optical losses in straight and bent Bragg fibres

    Kvantovaya Elektronika, 40:10 (2010),  893–898
  33. Erbium-doped aluminophosphosilicate optical fibres

    Kvantovaya Elektronika, 40:7 (2010),  633–638
  34. Optical properties of fibres with aluminophosphosilicate glass cores

    Kvantovaya Elektronika, 39:9 (2009),  857–862
  35. Propagation of an optical discharge through optical fibres upon interference of modes

    Kvantovaya Elektronika, 38:5 (2008),  441–444
  36. Radiation-resistant erbium-doped silica fibre

    Kvantovaya Elektronika, 37:10 (2007),  946–949
  37. Development and study of Bragg fibres with a large mode field and low optical losses

    Kvantovaya Elektronika, 36:7 (2006),  581–586
  38. Study of the radiation scattering indicatrix in fibres heavily doped with germanium oxide

    Kvantovaya Elektronika, 36:5 (2006),  464–469
  39. Efficient source of femtosecond pulses and its use for broadband supercontinuum generation

    Kvantovaya Elektronika, 35:7 (2005),  581–585
  40. Amplifying properties of heavily erbium-doped active fibres

    Kvantovaya Elektronika, 35:6 (2005),  559–562
  41. Optical losses in single-mode and multimode fibres heavily doped with GeO2 and P2O5

    Kvantovaya Elektronika, 34:3 (2004),  241–246
  42. Mechanisms of optical losses in fibres with a high concentration of germanium dioxide

    Kvantovaya Elektronika, 33:7 (2003),  633–638


© Steklov Math. Inst. of RAS, 2026