RUS  ENG
Full version
PEOPLE

Mikheev Leonid Dmitrievich

Publications in Math-Net.Ru

  1. Attainment of a 40 TW peak output power with a visible-range hybrid femtosecond laser system

    Kvantovaya Elektronika, 49:10 (2019),  901–904
  2. The role of dispersion in the mechanism of femtosecond pulse self-shortening in Kerr media

    Kvantovaya Elektronika, 49:4 (2019),  302–306
  3. Femtosecond pulse self-shortening in Kerr media: role of modulational instability in the spectrum formation

    Kvantovaya Elektronika, 48:4 (2018),  306–312
  4. Measurement of the gain of an optically pumped Xe2Cl active medium

    Kvantovaya Elektronika, 47:8 (2017),  701–704
  5. Formation and amplification of 50-ps pulses in a THL-100 hybrid laser system

    Kvantovaya Elektronika, 47:3 (2017),  184–187
  6. Self-phase modulation in a thin fused silica plate upon interaction with a converging beam of down-chirped femtosecond radiation

    Kvantovaya Elektronika, 45:5 (2015),  415–420
  7. Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects

    Kvantovaya Elektronika, 43:3 (2013),  190–200
  8. Spectral broadening and self-compression of negatively chirped visible femtosecond pulses in fused silica

    Kvantovaya Elektronika, 42:12 (2012),  1097–1099
  9. Multiterawatt femtosecond hybrid system based on a photodissociation XeF(C—A) amplifier in the visible range

    Kvantovaya Elektronika, 42:5 (2012),  377–378
  10. Amplification of short light pulses with a spherical wavefront

    Kvantovaya Elektronika, 38:10 (2008),  969–975
  11. Evaluating the prospects of exciting the Xe2Cl active medium by laser radiation for amplifying femtosecond pulses

    Kvantovaya Elektronika, 35:11 (2005),  984–986
  12. Photochemical lasers on electronic molecular transitions

    Kvantovaya Elektronika, 32:12 (2002),  1122–1132
  13. Numerical simulation of the active medium and investigation of the pump source for the development of a photochemical XeF(C–A) amplifier of femtosecond optical pulses

    Kvantovaya Elektronika, 31:7 (2001),  617–622
  14. Optical pumping of chemical HF lasers on the basis of NF3–H2 and ClF5–H2 mixtures by an open surface discharge in the bleaching-wave mode

    Kvantovaya Elektronika, 31:7 (2001),  611–616
  15. Xenon and hydrogen gas mixtures as laser active media

    Kvantovaya Elektronika, 15:8 (1988),  1670–1675
  16. Determination of the absolute quantum efficiency of the luminescence of Xe2Cl* in Cl2–Xe mixtures

    Kvantovaya Elektronika, 14:7 (1987),  1397–1398
  17. Optical pumping of xenon gas lasers

    Kvantovaya Elektronika, 14:7 (1987),  1393–1396
  18. Lasing in optically excited KrCl

    Kvantovaya Elektronika, 12:11 (1985),  2197–2198
  19. Stimulated emission from an optically pumped Xe2Cl laser

    Kvantovaya Elektronika, 12:9 (1985),  1954–1955
  20. Comparative analysis of wide-band excimer lasers with optical and electron pumping

    Kvantovaya Elektronika, 12:1 (1985),  180–183
  21. Efficiency of an optically pumped XeF laser

    Kvantovaya Elektronika, 11:9 (1984),  1750–1756
  22. Photodissociation XeF laser operating with an efficiency of about 1 %

    Kvantovaya Elektronika, 11:6 (1984),  1080–1081
  23. Measurements of the absolute luminescence quantum efficiency of mixtures of Cl$_2$ with Ar, Kr, and Xe excited by vacuum ultraviolet radiation

    Kvantovaya Elektronika, 11:2 (1984),  354–365
  24. Some features of the use of a mixture of H2–He gases as the active medium of an optically pumped laser

    Kvantovaya Elektronika, 11:1 (1984),  197–199
  25. Optical inhomogeneities in a bleaching wave in the active medium of a photochemical Kr2F laser

    Kvantovaya Elektronika, 10:9 (1983),  1868–1871
  26. Permissible heating of a medium and specific ultraviolet output energy of an optically pumped J2 laser

    Kvantovaya Elektronika, 10:5 (1983),  904–905
  27. Mechanism for formation of the XeJ(B) excimer by photoexcitation of an Xe–J2 mixture

    Kvantovaya Elektronika, 10:4 (1983),  833–837
  28. Blue-green laser emission from IF subjected to wide-band optical pumping

    Kvantovaya Elektronika, 9:5 (1982),  1064–1065
  29. Investigation of an I2(D'A') laser pumped by wide-band radiation

    Kvantovaya Elektronika, 9:3 (1982),  573–582
  30. Investigation of luminescence in the 420 nm range as a result of photolysis of KrF2 in mixtures with Ar, Kr, and N2

    Kvantovaya Elektronika, 8:10 (1981),  2183–2190
  31. Determination of the spectral dependences of the absolute quantum yields of XeF(B, C, D) excimers in photolysis of XeF2

    Kvantovaya Elektronika, 8:9 (1981),  1945–1952
  32. Investigation of luminescence and excitation spectra of molecular iodine

    Kvantovaya Elektronika, 8:5 (1981),  1138–1141
  33. Lasing as a result of a B–X transition in the excimer XeF formed as a result of photodissociation of KrF2 in mixtures with Xe

    Kvantovaya Elektronika, 8:2 (1981),  373–375
  34. Stimulated emission from the triatomic excimer $Kr_2F$ subjected to optical pumping

    Kvantovaya Elektronika, 7:12 (1980),  2660–2661
  35. Mechanism of emission of blue luminescence from $ArKrF^*$ and $KrN_2F^*$ excimers

    Kvantovaya Elektronika, 7:7 (1980),  1562–1563
  36. Ultimate characteristics of an $XeO$ photochemical laser

    Kvantovaya Elektronika, 7:7 (1980),  1482–1491
  37. Pulse-periodic operation of an iodine ultraviolet laser pumped by radiation from quartz flashlamps

    Kvantovaya Elektronika, 6:9 (1979),  2033–2034
  38. Energy characteristics of an XeO photochemical laser

    Kvantovaya Elektronika, 6:7 (1979),  1513–1522
  39. Determination of the spectral dependences of the absolute quantum yields of O($^1$S) by the XeO$^*$ luminescence method. I. Photolysis of CO$_2$ and N$_2$O

    Kvantovaya Elektronika, 6:7 (1979),  1430–1441
  40. Laser action due to the bound-free C(3/2) – A(3/2) transition in the XeF molecule formed by photodissociation of XeF2

    Kvantovaya Elektronika, 6:5 (1979),  1074
  41. Quenching of excited iodine atoms I(52P1/2) by molecules with C–I bonds

    Kvantovaya Elektronika, 5:11 (1978),  2461–2463
  42. Study of a photochemical laser utilizing the XeO molecule

    Kvantovaya Elektronika, 5:7 (1978),  1456–1464
  43. Gas lasers with wide-band optical pumping (review)

    Kvantovaya Elektronika, 5:6 (1978),  1189–1220
  44. Stimulated emission due to the B(1/2)–X2Σ+ transition in the XeF molecule formed by photodissociation of XeF2

    Kvantovaya Elektronika, 4:11 (1977),  2453
  45. Laser utilizing an electronic transition in CN radicals pumped optically by radiation from an open high-current discharge

    Kvantovaya Elektronika, 4:9 (1977),  2057–2058
  46. Optically pumped ultraviolet molecular iodine laser

    Kvantovaya Elektronika, 4:3 (1977),  638
  47. Laser emission from the XeO molecule under optical pumping conditions

    Kvantovaya Elektronika, 3:4 (1976),  930–932
  48. Photochemical laser utilizing the 1Σ+g3Σg vibronic transition in S2

    Kvantovaya Elektronika, 2:4 (1975),  799–806
  49. Investigation of processes associated with photolysis of SPF3

    Kvantovaya Elektronika, 1:2 (1974),  394–400

  50. In memory of Vitalii Sergeevich Zuev

    Kvantovaya Elektronika, 44:4 (2014),  392
  51. In Memory of Gennadii Alekseevich Kirillov (25 July 1933 – 22 September 2013)

    Kvantovaya Elektronika, 43:10 (2013),  988
  52. On the 80th anniversary of V. S. Zuev

    Kvantovaya Elektronika, 43:7 (2013),  690
  53. Vitalii Sergeevich Zuev

    Kvantovaya Elektronika, 33:8 (2003),  751
  54. Vitaliĭ Sergeevich Zuev (on his fiftieth birthday)

    Kvantovaya Elektronika, 10:7 (1983),  1520


© Steklov Math. Inst. of RAS, 2026