RUS  ENG
Full version
PEOPLE

Mel'nikov Mark Samuilovich

Publications in Math-Net.Ru

  1. $C^1$-extension of subharmonic functions from closed Jordan domains in $\mathbb R^2$

    Izv. RAN. Ser. Mat., 68:6 (2004),  105–118
  2. $C^1$-approximation and extension of subharmonic functions

    Mat. Sb., 192:4 (2001),  37–58
  3. Saga of the Painlevé Problem and Analytic Capacity

    Trudy Mat. Inst. Steklova, 235 (2001),  157–164
  4. Analytic capacity: discrete approach and curvature of measure

    Mat. Sb., 186:6 (1995),  57–76
  5. Approximations of the exponential function and relative closeness of stable signals

    Mat. Sb., 182:11 (1991),  1542–1558
  6. Relative proximity of functions, and Laplace transforms

    Dokl. Akad. Nauk SSSR, 311:5 (1990),  1097–1102
  7. 3.7. Analytic capacity and rational approximation

    Zap. Nauchn. Sem. LOMI, 81 (1978),  207–209
  8. A criterion for points to belong to the same Gleason part of the algebra $R(X)$

    Izv. Akad. Nauk SSSR Ser. Mat., 41:5 (1977),  1161–1169
  9. On interpolation sets for the algebra $R(X)$

    Izv. Akad. Nauk SSSR Ser. Mat., 41:2 (1977),  325–333
  10. On the Gleason parts of the algebra $R(X)$

    Mat. Sb. (N.S.), 101(143):2(10) (1976),  293–300
  11. Questions of the theory of approximation of functions of a complex variable

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 4 (1975),  143–250
  12. Metric properties of analytic $\alpha$-capacity and approximation of analytic functions with a Hölder condition by rational functions

    Mat. Sb. (N.S.), 79(121):1(5) (1969),  118–127
  13. Analytic capacity and the Cauchy integral

    Dokl. Akad. Nauk SSSR, 172:1 (1967),  26–29
  14. Structure of the gleason part of the algebra $R(E)$

    Funktsional. Anal. i Prilozhen., 1:1 (1967),  97–100
  15. Estimate of the Cauchy integral over an analytic curve

    Mat. Sb. (N.S.), 71(113):4 (1966),  503–514
  16. On the boundedness of variations of a manifold

    Tr. Mosk. Mat. Obs., 14 (1965),  306–337
  17. Incommensurability of the minimal linear measure with the length of a set

    Dokl. Akad. Nauk SSSR, 151:6 (1963),  1256–1259
  18. Dependence of volume and diameter of sets in an $n$-dimensional Banach space

    Uspekhi Mat. Nauk, 18:4(112) (1963),  165–170


© Steklov Math. Inst. of RAS, 2026