|
|
Publications in Math-Net.Ru
-
$C^1$-extension of subharmonic functions from closed Jordan domains in $\mathbb R^2$
Izv. RAN. Ser. Mat., 68:6 (2004), 105–118
-
$C^1$-approximation and extension of subharmonic functions
Mat. Sb., 192:4 (2001), 37–58
-
Saga of the Painlevé Problem and Analytic Capacity
Trudy Mat. Inst. Steklova, 235 (2001), 157–164
-
Analytic capacity: discrete approach and curvature of measure
Mat. Sb., 186:6 (1995), 57–76
-
Approximations of the exponential function and relative closeness of stable signals
Mat. Sb., 182:11 (1991), 1542–1558
-
Relative proximity of functions, and Laplace transforms
Dokl. Akad. Nauk SSSR, 311:5 (1990), 1097–1102
-
3.7. Analytic capacity and rational approximation
Zap. Nauchn. Sem. LOMI, 81 (1978), 207–209
-
A criterion for points to belong to the same Gleason part of the algebra $R(X)$
Izv. Akad. Nauk SSSR Ser. Mat., 41:5 (1977), 1161–1169
-
On interpolation sets for the algebra $R(X)$
Izv. Akad. Nauk SSSR Ser. Mat., 41:2 (1977), 325–333
-
On the Gleason parts of the algebra $R(X)$
Mat. Sb. (N.S.), 101(143):2(10) (1976), 293–300
-
Questions of the theory of approximation of functions of a complex variable
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 4 (1975), 143–250
-
Metric properties of analytic $\alpha$-capacity and approximation of analytic functions with a Hölder condition by rational functions
Mat. Sb. (N.S.), 79(121):1(5) (1969), 118–127
-
Analytic capacity and the Cauchy integral
Dokl. Akad. Nauk SSSR, 172:1 (1967), 26–29
-
Structure of the gleason part of the algebra $R(E)$
Funktsional. Anal. i Prilozhen., 1:1 (1967), 97–100
-
Estimate of the Cauchy integral over an analytic curve
Mat. Sb. (N.S.), 71(113):4 (1966), 503–514
-
On the boundedness of variations of a manifold
Tr. Mosk. Mat. Obs., 14 (1965), 306–337
-
Incommensurability of the minimal linear measure with the length of a set
Dokl. Akad. Nauk SSSR, 151:6 (1963), 1256–1259
-
Dependence of volume and diameter of sets in an $n$-dimensional Banach space
Uspekhi Mat. Nauk, 18:4(112) (1963), 165–170
© , 2026