|
|
Publications in Math-Net.Ru
-
Multiple interpolation problem for functions with zero spherical mean
Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 5, 44–57
-
Uniqueness of solutions of generalized convolution equations on the
hyperbolic plane and the group $\mathrm{PSL}(2,\mathbb{R})$
Izv. RAN. Ser. Mat., 88:6 (2024), 44–81
-
Interpolation of functions with zero spherical averages obeying growth constraints
Sibirsk. Mat. Zh., 65:5 (2024), 841–851
-
Spectral Synthesis on the Reduced Heisenberg Group
Mat. Zametki, 113:1 (2023), 46–57
-
Approximation of functions on rays in $\Bbb{R}^n$ by solutions to convolution equations
Sibirsk. Mat. Zh., 64:1 (2023), 56–64
-
Tangent approximation by solutions of the convolution equation
Probl. Anal. Issues Anal., 11(29):3 (2022), 125–142
-
Continuous mean periodic extension of functions from an interval
Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 21–25
-
Continuous extension of functions from a segment to functions in $\mathbb{R}^n$ with zero ball means
Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 3, 3–14
-
Interpolation problems for functions with zero ball means
Probl. Anal. Issues Anal., 10(28):3 (2021), 129–140
-
Interpolation problems for functions with zero integrals over balls of fixed radius
Dokl. RAN. Math. Inf. Proc. Upr., 490 (2020), 20–23
-
On the radial symmetry property for harmonic functions
Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 10, 12–23
-
On the problem of mean periodic extension
Probl. Anal. Issues Anal., 9(27):2 (2020), 138–151
-
Analogs of the liouville property for harmonic functions on unbounded domains
Sibirsk. Mat. Zh., 61:4 (2020), 752–764
-
Overdetermined Neumann boundary value problem in unbounded domains
Ufimsk. Mat. Zh., 12:2 (2020), 10–20
-
Morera-type theorems in the hyperbolic disc
Izv. RAN. Ser. Mat., 82:1 (2018), 34–64
-
An Analog of the Brown–Schreiber–Taylor Theorem for Weighted Hyperbolic Shifts
Mat. Zametki, 103:2 (2018), 172–185
-
A new characterization of holomorphic functions in the unit disk
Probl. Anal. Issues Anal., 7(25):1 (2018), 134–147
-
Spectral synthesis on the group of conformal automorphisms of the unit disc
Mat. Sb., 209:1 (2018), 3–36
-
Analogs of the Globevnik Problem on Riemannian Two-Point Homogeneous Spaces
Mat. Zametki, 101:3 (2017), 359–372
-
Spectral analysis on the group of conformal automorphisms of the unit disc
Mat. Sb., 207:7 (2016), 57–80
-
Ñînical injectivity sets of the Radon transform on spheres
Algebra i Analiz, 27:5 (2015), 1–31
-
Description of the kernel of the generalized Minkowski transform on the sphere
Izv. RAN. Ser. Mat., 79:1 (2015), 43–62
-
Local two-radii theorems on the multi-dimensional sphere
Izv. RAN. Ser. Mat., 78:1 (2014), 3–24
-
Spherical means on two-point homogeneous spaces and applications
Izv. RAN. Ser. Mat., 77:2 (2013), 3–34
-
Behaviour at infinity of solutions of twisted convolution equations
Izv. RAN. Ser. Mat., 76:1 (2012), 85–100
-
On the extension problem for solutions of homogeneous convolution equations
Izv. RAN. Ser. Mat., 75:3 (2011), 65–96
-
On a problem of Berenstein–Gay and its generalizations
Izv. RAN. Ser. Mat., 74:4 (2010), 33–62
-
Sets with the Pompeiu Property on the Plane and on the Sphere
Mat. Zametki, 87:1 (2010), 69–82
-
Extremal problems related to the John uniqueness theorem
Algebra i Analiz, 21:5 (2009), 37–69
-
Convolution equations in many-dimensional domains and on the Heisenberg reduced group
Mat. Sb., 199:8 (2008), 29–60
-
Local two-radii theorem in symmetric spaces
Mat. Sb., 198:11 (2007), 21–46
-
Uniqueness theorems for solutions of the convolution equation
on symmetric spaces
Izv. RAN. Ser. Mat., 70:6 (2006), 3–18
-
A local two-radii theorem for quasianalytic classes of functions
Mat. Zametki, 80:4 (2006), 490–500
-
A definitive version of the local two-radii theorem on hyperbolic spaces
Izv. RAN. Ser. Mat., 65:2 (2001), 3–26
-
Theorems on ball mean values in symmetric spaces
Mat. Sb., 192:9 (2001), 17–38
-
Extremal problems on Pompeiu sets. II
Mat. Sb., 191:5 (2000), 3–16
-
Injectivity sets for the Radon transform over a sphere
Izv. RAN. Ser. Mat., 63:3 (1999), 63–76
-
Injectivity sets of the Pompeiu transform
Mat. Sb., 190:11 (1999), 51–66
-
Extremal problems on Pompeiu sets
Mat. Sb., 189:7 (1998), 3–22
-
Theorems on the injectivity of the Radon transform on spheres
Dokl. Akad. Nauk, 354:3 (1997), 298–300
-
Uniqueness theorems for some classes of functions with zero spherical means
Mat. Zametki, 62:1 (1997), 59–65
-
Solution of the support problem for several function classes
Mat. Sb., 188:9 (1997), 13–30
-
Two-radii theorems on spaces of constant curvature
Dokl. Akad. Nauk, 347:3 (1996), 300–302
-
An extremum problem related to Morera's theorem
Mat. Zametki, 60:6 (1996), 804–809
-
Extremal cases of the Pompeiu problem
Mat. Zametki, 59:5 (1996), 671–680
-
The final version of the mean value theorem for harmonic functions
Mat. Zametki, 59:3 (1996), 351–358
-
A definitive version of the local two-radii theorem
Mat. Sb., 186:6 (1995), 15–34
-
Approximation of functions on bounded domains in $R^n$ by linear combinations of shifts
Dokl. Akad. Nauk, 334:5 (1994), 560–561
-
Theorems on two radii on bounded domains of Euclidean spaces
Differ. Uravn., 30:10 (1994), 1719–1724
-
New two-radii theorems in the theory of harmonic functions
Izv. RAN. Ser. Mat., 58:1 (1994), 182–194
-
New mean value theorems for polyanalytic functions
Mat. Zametki, 56:3 (1994), 20–28
-
Mean value theorems for a class of polynomials
Sibirsk. Mat. Zh., 35:4 (1994), 737–745
-
Morera-type theorems in domains with the weak cone condition
Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 10, 15–20
-
On a problem of Zalcman and its generalizations
Mat. Zametki, 53:2 (1993), 30–36
-
New theorems on the mean for solutions of the Helmholtz equation
Mat. Sb., 184:7 (1993), 71–78
-
Uniqueness theorems for multiple lacunary trigonometric series
Mat. Zametki, 51:6 (1992), 27–31
-
Low-density jets beyond a sonic nozzle at large pressure drops
Prikl. Mekh. Tekh. Fiz., 14:2 (1973), 64–73
-
On some properties of functions
Math. Ed., 2022, no. 1(101), 38–47
-
On some properties of functions characterized by zero integrals
Math. Ed., 2021, no. 4(100)-2, 38–48
© , 2026