RUS  ENG
Full version
PEOPLE

Nabiev Ibrahim Mail oglu

Publications in Math-Net.Ru

  1. Uniqueness of recovery of the Sturm-Liouville operator with a spectral parameter quadratically entering the boundary condition

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 79,  14–24
  2. Spectral properties of the Sturm–Liouville operator with a spectral parameter quadratically included in the boundary condition

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:2 (2020),  237–248
  3. An algorithm for reconstructing the Dirac operator with a spectral parameter in the boundary condition

    Zh. Vychisl. Mat. Mat. Fiz., 56:2 (2016),  252–258
  4. Solution of the Inverse Quasiperiodic Problem for the Dirac System

    Mat. Zametki, 89:6 (2011),  885–893
  5. Solution of inverse problem for the diffusion operator in a symmetric case

    Izv. Saratov Univ. Math. Mech. Inform., 9:4(1) (2009),  36–40
  6. The inverse spectral problem for pencils of differential operators

    Mat. Sb., 198:11 (2007),  47–66
  7. Inverse spectral problem for diffusion operator on the segment

    Mat. Fiz. Anal. Geom., 11:3 (2004),  302–313
  8. A class of inverse problems for a quadratic pencil of Sturm-Liouville operators

    Differ. Uravn., 36:3 (2000),  418–420
  9. Multiplicities and relative position of eigenvalues of a quadratic pencil of Sturm–Liouville operators

    Mat. Zametki, 67:3 (2000),  369–381
  10. Solution of a class of inverse boundary-value Sturm–Liouville problems

    Mat. Sb., 186:5 (1995),  35–48
  11. The reconstruction of a differential operator by its spectrum

    Mat. Zametki, 56:4 (1994),  59–66
  12. An inverse problem for the Sturm–Liouville operator with nonseparable selfadjoint boundary conditions

    Sibirsk. Mat. Zh., 31:6 (1990),  46–54
  13. A class of inverse boundary value problems for Sturm–Liouville operators

    Differ. Uravn., 25:7 (1989),  1114–1120


© Steklov Math. Inst. of RAS, 2026