RUS  ENG
Full version
PEOPLE

Zudilin Wadim Valentinovich

Publications in Math-Net.Ru

  1. A Hypergeometric Versionof the Modularity of Rigid Calabi–Yau Manifolds

    SIGMA, 14 (2018), 086, 16 pp.
  2. One of the Odd Zeta Values from $\zeta(5)$ to $\zeta(25)$ Is Irrational. By Elementary Means

    SIGMA, 14 (2018), 028, 8 pp.
  3. Hankel Determinants of Zeta Values

    SIGMA, 11 (2015), 101, 5 pp.
  4. On the irrationality measure of $\pi^2$

    Uspekhi Mat. Nauk, 68:6(414) (2013),  171–172
  5. Arithmetic hypergeometric series

    Uspekhi Mat. Nauk, 66:2(398) (2011),  163–216
  6. A Supercongruence Motivated by the Legendre Family of Elliptic Curves

    Mat. Zametki, 88:4 (2010),  620–624
  7. Quadratic Transformations and Guillera's Formulas for $1/\pi^2$

    Mat. Zametki, 81:3 (2007),  335–340
  8. More Ramanujan-type formulae for $1/\pi^2$

    Uspekhi Mat. Nauk, 62:3(375) (2007),  211–212
  9. Linear independence of values of Tschakaloff series

    Uspekhi Mat. Nauk, 62:1(373) (2007),  197–198
  10. An elementary proof of the irrationality of Tschakaloff series

    Fundam. Prikl. Mat., 11:6 (2005),  59–64
  11. Ramanujan-type formulae and irrationality measures of some multiples of $\pi$

    Mat. Sb., 196:7 (2005),  51–66
  12. Approximations to $q$-logarithms and $q$-dilogarithms, with applications to $q$-zeta values

    Zap. Nauchn. Sem. POMI, 322 (2005),  107–124
  13. The Inverse Legendre Transform of a Certain Family of Sequences

    Mat. Zametki, 76:2 (2004),  300–303
  14. Binomial Sums Related to Rational Approximations to $\zeta(4)$

    Mat. Zametki, 75:4 (2004),  637–640
  15. On the Functional Transcendence of $q$-Zeta Values

    Mat. Zametki, 73:4 (2003),  629–630
  16. Algebraic relations for multiple zeta values

    Uspekhi Mat. Nauk, 58:1(349) (2003),  3–32
  17. Irrationality of values of the Riemann zeta function

    Izv. RAN. Ser. Mat., 66:3 (2002),  49–102
  18. Diophantine Problems for $q$-Zeta Values

    Mat. Zametki, 72:6 (2002),  936–940
  19. A Third-Order Apéry-Like Recursion for $\zeta (5)$

    Mat. Zametki, 72:5 (2002),  796–800
  20. Integrality of Power Expansions Related to Hypergeometric Series

    Mat. Zametki, 71:5 (2002),  662–676
  21. Very well-poised hypergeometric series and multiple integrals

    Uspekhi Mat. Nauk, 57:4(346) (2002),  177–178
  22. On the irrationality measure for a $q$-analogue of $\zeta(2)$

    Mat. Sb., 193:8 (2002),  49–70
  23. Derivatives of Siegel modular forms and exponential functions

    Izv. RAN. Ser. Mat., 65:4 (2001),  21–34
  24. One of the Eight Numbers $\zeta(5),\zeta(7),\dots,\zeta(17),\zeta(19)$ Is Irrational

    Mat. Zametki, 70:3 (2001),  472–476
  25. On the irrationality of $\zeta _q(2)$

    Uspekhi Mat. Nauk, 56:6(342) (2001),  147–148
  26. One of the numbers $\zeta(5), \zeta(7), \zeta(9), \zeta(11)$ is irrational

    Uspekhi Mat. Nauk, 56:4(340) (2001),  149–150
  27. On the irrationality of the values of the zeta function at odd integer points

    Uspekhi Mat. Nauk, 56:2(338) (2001),  215–216
  28. Cancellation of factorials

    Mat. Sb., 192:8 (2001),  95–122
  29. Thetanulls and differential equations

    Mat. Sb., 191:12 (2000),  77–122
  30. Recurrent sequences and the measure of irrationality of values of elliptic integrals

    Mat. Zametki, 61:5 (1997),  785–789
  31. On the measure of linear and algebraic independence for values of entire hypergeometric functions

    Mat. Zametki, 61:2 (1997),  302–304
  32. Difference equations and the irrationality measure of numbers

    Trudy Mat. Inst. Steklova, 218 (1997),  165–178
  33. On a measure of irrationality for values of $G$-functions

    Izv. RAN. Ser. Mat., 60:1 (1996),  87–114
  34. On the algebraic structure of functional matrices of special form

    Mat. Zametki, 60:6 (1996),  851–860
  35. Lower bounds for polynomials in the values of certain entire functions

    Mat. Sb., 187:12 (1996),  57–86
  36. On rational approximations of values of a certain class of entire functions

    Mat. Sb., 186:4 (1995),  89–124


© Steklov Math. Inst. of RAS, 2026