|
|
Publications in Math-Net.Ru
-
A Hypergeometric Versionof the Modularity of Rigid Calabi–Yau Manifolds
SIGMA, 14 (2018), 086, 16 pp.
-
One of the Odd Zeta Values from $\zeta(5)$ to $\zeta(25)$ Is Irrational. By Elementary Means
SIGMA, 14 (2018), 028, 8 pp.
-
Hankel Determinants of Zeta Values
SIGMA, 11 (2015), 101, 5 pp.
-
On the irrationality measure of $\pi^2$
Uspekhi Mat. Nauk, 68:6(414) (2013), 171–172
-
Arithmetic hypergeometric series
Uspekhi Mat. Nauk, 66:2(398) (2011), 163–216
-
A Supercongruence Motivated by the Legendre Family of Elliptic Curves
Mat. Zametki, 88:4 (2010), 620–624
-
Quadratic Transformations and Guillera's Formulas for $1/\pi^2$
Mat. Zametki, 81:3 (2007), 335–340
-
More Ramanujan-type formulae for $1/\pi^2$
Uspekhi Mat. Nauk, 62:3(375) (2007), 211–212
-
Linear independence of values of Tschakaloff series
Uspekhi Mat. Nauk, 62:1(373) (2007), 197–198
-
An elementary proof of the irrationality of Tschakaloff series
Fundam. Prikl. Mat., 11:6 (2005), 59–64
-
Ramanujan-type formulae and irrationality measures of some multiples of $\pi$
Mat. Sb., 196:7 (2005), 51–66
-
Approximations to $q$-logarithms and $q$-dilogarithms, with applications to $q$-zeta values
Zap. Nauchn. Sem. POMI, 322 (2005), 107–124
-
The Inverse Legendre Transform of a Certain Family of Sequences
Mat. Zametki, 76:2 (2004), 300–303
-
Binomial Sums Related to Rational Approximations to $\zeta(4)$
Mat. Zametki, 75:4 (2004), 637–640
-
On the Functional Transcendence of $q$-Zeta Values
Mat. Zametki, 73:4 (2003), 629–630
-
Algebraic relations for multiple zeta values
Uspekhi Mat. Nauk, 58:1(349) (2003), 3–32
-
Irrationality of values of the Riemann zeta function
Izv. RAN. Ser. Mat., 66:3 (2002), 49–102
-
Diophantine Problems for $q$-Zeta Values
Mat. Zametki, 72:6 (2002), 936–940
-
A Third-Order Apéry-Like Recursion for $\zeta (5)$
Mat. Zametki, 72:5 (2002), 796–800
-
Integrality of Power Expansions Related to Hypergeometric Series
Mat. Zametki, 71:5 (2002), 662–676
-
Very well-poised hypergeometric series and multiple integrals
Uspekhi Mat. Nauk, 57:4(346) (2002), 177–178
-
On the irrationality measure for a $q$-analogue of $\zeta(2)$
Mat. Sb., 193:8 (2002), 49–70
-
Derivatives of Siegel modular forms and exponential functions
Izv. RAN. Ser. Mat., 65:4 (2001), 21–34
-
One of the Eight Numbers $\zeta(5),\zeta(7),\dots,\zeta(17),\zeta(19)$ Is Irrational
Mat. Zametki, 70:3 (2001), 472–476
-
On the irrationality of $\zeta _q(2)$
Uspekhi Mat. Nauk, 56:6(342) (2001), 147–148
-
One of the numbers $\zeta(5), \zeta(7), \zeta(9), \zeta(11)$ is irrational
Uspekhi Mat. Nauk, 56:4(340) (2001), 149–150
-
On the irrationality of the values of the zeta function at odd integer points
Uspekhi Mat. Nauk, 56:2(338) (2001), 215–216
-
Cancellation of factorials
Mat. Sb., 192:8 (2001), 95–122
-
Thetanulls and differential equations
Mat. Sb., 191:12 (2000), 77–122
-
Recurrent sequences and the measure of irrationality of values of elliptic integrals
Mat. Zametki, 61:5 (1997), 785–789
-
On the measure of linear and algebraic independence for values of entire hypergeometric functions
Mat. Zametki, 61:2 (1997), 302–304
-
Difference equations and the irrationality measure of numbers
Trudy Mat. Inst. Steklova, 218 (1997), 165–178
-
On a measure of irrationality for values of $G$-functions
Izv. RAN. Ser. Mat., 60:1 (1996), 87–114
-
On the algebraic structure of functional matrices of special form
Mat. Zametki, 60:6 (1996), 851–860
-
Lower bounds for polynomials in the values of certain entire functions
Mat. Sb., 187:12 (1996), 57–86
-
On rational approximations of values of a certain class of entire functions
Mat. Sb., 186:4 (1995), 89–124
© , 2026