RUS  ENG
Full version
PEOPLE

Chechkin Gregory Aleksandrovich

Publications in Math-Net.Ru

  1. On homogenization of the Lavrent'ev–Bitsadze equation in a partially perforated domain with the third boundary condition on the boundary of the cavities. Subcritical, critical and supercritical cases

    CMFD, 71:1 (2025),  194–212
  2. Bojarski–Meyers estimate for a solution to the Zaremba problem for Poisson's equations with drift

    Mat. Sb., 216:8 (2025),  5–21
  3. Homogenization of attractors to reaction–diffusion equations in domains with rapidly oscillating boundary: supercritical case

    Ufimsk. Mat. Zh., 17:2 (2025),  94–107
  4. Study at the Chair of differential equations of the Mechanics and Mathematics Faculty of MSU for 2013–2024 year

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025, no. 4,  24–35
  5. On the Boyarsky–Meyers estimate for the solution of the Dirichlet problem for a second-order linear elliptic equation with drift

    CMFD, 70:1 (2024),  1–14
  6. Multidimensional Zaremba problem for the $p(\,\cdot\,)$-laplace equation. A Boyarsky–Meyers estimate

    TMF, 218:1 (2024),  3–22
  7. On Zaremba problem for second–order linear elliptic equation with drift in case of limit exponent

    Ufimsk. Mat. Zh., 16:4 (2024),  3–13
  8. Nonclassical problems of the mathematical theory of hydrodynamic boundary layer

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 1,  11–20
  9. On attractors of MHD boundary layer of liquid with Ladyzhenskaya rheological law. Inuence of magnetic field on velocity asymptotics

    Zap. Nauchn. Sem. POMI, 536 (2024),  286–335
  10. On attractors of Ginzburg–Landau equations in domain with locally periodic microstructure. Subcritical, critical and supercritical cases

    Dokl. RAN. Math. Inf. Proc. Upr., 513 (2023),  9–14
  11. On asymptotics of attractors to Navier–Stockes system in anisotropic medium with small periodic obstacles

    Dokl. RAN. Math. Inf. Proc. Upr., 512 (2023),  42–46
  12. О пограничном слое Марангони в вязкой неньютоновской среде

    Tr. Semim. im. I. G. Petrovskogo, 33 (2023),  174–195
  13. Erratum to: On thermal boundary layer in a viscous non-Newtonian medium

    Dokl. RAN. Math. Inf. Proc. Upr., 507 (2022),  486
  14. On thermal boundary layer in a viscous non-Newtonian medium

    Dokl. RAN. Math. Inf. Proc. Upr., 502 (2022),  28–33
  15. Strong convergence of attractors of reaction-diffusion system with rapidly oscillating terms in an orthotropic porous medium

    Izv. RAN. Ser. Mat., 86:6 (2022),  47–78
  16. On attractors of 2D Navier–Stockes system in a medium with anisotropic variable viscosity and periodic obstacles

    Zap. Nauchn. Sem. POMI, 519 (2022),  10–34
  17. On attractors of reaction–diffusion equations in a porous orthotropic medium

    Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021),  10–15
  18. Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation

    Dokl. RAN. Math. Inf. Proc. Upr., 497 (2021),  3–6
  19. On an Unsteady Boundary Layer of a Viscous Rheologically Complex Fluid

    Trudy Mat. Inst. Steklova, 310 (2020),  40–77
  20. Equations of symmetric MHD-boundary layer of viscous fluid with Ladyzhenskaya rheology law

    Tr. Semim. im. I. G. Petrovskogo, 32 (2019),  72–90
  21. On the asymptotic behaviour of eigenvalues of a boundary-value problem in a planar domain of Steklov sieve type

    Izv. RAN. Ser. Mat., 82:6 (2018),  37–64
  22. Equations of boundary layer for a generalized newtonian medium near a critical point

    Tr. Semim. im. I. G. Petrovskogo, 31 (2016),  158–176
  23. Vibrations of a fluid containing a wide spaced net with floats under its free surface

    Tr. Semim. im. I. G. Petrovskogo, 31 (2016),  38–62
  24. Eigenvibrations of thick cascade junctions with ‘very heavy’ concentrated masses

    Izv. RAN. Ser. Mat., 79:3 (2015),  41–86
  25. Scientific heritage of Vladimir Mikhailovich Millionshchikov

    Tr. Semim. im. I. G. Petrovskogo, 30 (2014),  5–41
  26. Homogenization of stratified dilatant fluid

    CMFD, 48 (2013),  75–83
  27. A new weighted Friedrichs-type inequality for a perforated domain with a sharp constant

    Eurasian Math. J., 2:1 (2011),  81–103
  28. Equations of the boundary layer for a modified Navier-Stokes system

    Tr. Semim. im. I. G. Petrovskogo, 28 (2011),  329–361
  29. On boundary layer of Newtonian fluid, flowing on a rough surface and percolating through a perforated obstacle

    Ufimsk. Mat. Zh., 3:3 (2011),  93–104
  30. On the asymptotics of a solution of a boundary value problem in a domain perforated along boundary

    Vestnik Chelyabinsk. Gos. Univ., 2011, no. 14,  27–36
  31. Asymptotic analysis of boundary-value problems in thick three-dimensional multi-level junctions

    Mat. Sb., 200:3 (2009),  49–74
  32. Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with oscillating boundary

    Zh. Vychisl. Mat. Mat. Fiz., 46:1 (2006),  102–115
  33. Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many “light” concentrated masses situated on the boundary. Two-dimensional case

    Izv. RAN. Ser. Mat., 69:4 (2005),  161–204
  34. Estimation of Solutions of Boundary-Value Problems in Domains with Concentrated Masses Located Periodically along the Boundary: Case of Light Masses

    Mat. Zametki, 76:6 (2004),  928–944
  35. Splitting of a multiple eigenvalue in a problem on concentrated masses

    Uspekhi Mat. Nauk, 59:4(358) (2004),  205–206
  36. On the Asymptotics of Solutions of the Lavrent'ev–Bitsadze Equation in a Partially Perforated Domain

    Differ. Uravn., 39:5 (2003),  645–655
  37. Homogenization of the Lavrent'ev–Bitsadze Equation in a Partially Perforated Domain

    Differ. Uravn., 38:10 (2002),  1390–1396
  38. On eigenvibrations of a body with “light” concentrated masses on the surface

    Uspekhi Mat. Nauk, 57:6(348) (2002),  195–196
  39. On Weighted Korn's Inequality for a Thin Nonsymmetric Plate

    Trudy Mat. Inst. Steklova, 236 (2002),  347–353
  40. On Eigenvibrations of a Body with Many Concentrated Masses Located Nonperiodically along the Boundary

    Trudy Mat. Inst. Steklova, 236 (2002),  158–166
  41. Averaging in a perforated domain with an oscillating third boundary condition

    Mat. Sb., 192:7 (2001),  3–20
  42. On the averaging of solutions of a second-order elliptic equation with nonperiodic rapidly changing boundary conditions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2001, no. 1,  14–19
  43. Averaging of operators with a fine-scaled structure of boundary conditions

    Mat. Zametki, 65:4 (1999),  496–510
  44. A boundary value problem for the Laplacian with rapidly changing type of boundary conditions in a multi-dimensional domain

    Sibirsk. Mat. Zh., 40:2 (1999),  271–287
  45. Asymptotic behavior of the solution of a boundary value problem in a punctured domain with an oscillating boundary

    Sibirsk. Mat. Zh., 39:4 (1998),  730–754
  46. Homogenization of a mixed boundary-value problem for the Laplace operator in the case of an insoluble 'limit' problem

    Mat. Sb., 186:4 (1995),  47–60
  47. On boundary-value problems for elliptic equations with rapidly changing type of boundary conditions

    Uspekhi Mat. Nauk, 48:6(294) (1993),  163–164
  48. Averaging of boundary value problems with a singular perturbation of the boundary conditions

    Mat. Sb., 184:6 (1993),  99–150

  49. К 70-летию Валерия Васильевича Козлова

    Tr. Semim. im. I. G. Petrovskogo, 33 (2023),  3–7
  50. Vladimir Alexandrovich Kondratiev. July 2, 1935 – March 11, 2010

    CMFD, 39 (2011),  5–10
  51. Olga Arsenjevna Oleinik

    Tr. Semim. im. I. G. Petrovskogo, 28 (2011),  5–7
  52. Vladimir Alexandrovich Kondratiev on the 70th anniversary of his birth

    Tr. Semim. im. I. G. Petrovskogo, 26 (2007),  5–28
  53. Vladimir Aleksandrovich Kondrat'ev

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2005, no. 5,  77–79
  54. Ol'ga Arsen'evna Oleinik (obituary)

    Uspekhi Mat. Nauk, 58:1(349) (2003),  165–174
  55. Anatolii Sergeevich Kalashnikov (obituary)

    Uspekhi Mat. Nauk, 55:5(335) (2000),  161–168


© Steklov Math. Inst. of RAS, 2026