|
|
Publications in Math-Net.Ru
-
On the Sum of a Trigonometric Sine Series with Monotone Coefficients
Trudy Mat. Inst. Steklova, 319 (2022), 29–50
-
Functions with general monotone Fourier coefficients
Uspekhi Mat. Nauk, 76:6(462) (2021), 3–70
-
On unimprovability of some theorems on convergence in mean of trigonometric series
Fundam. Prikl. Mat., 22:1 (2018), 31–49
-
Bound of remainder term of asymptotic solution one extremal problem connected with nonnegative trigonometric polynomials
Mat. Zametki, 100:2 (2016), 303–307
-
On the asymptotic solution of one extremal problem related to nonnegative trigonometric polynomials
Fundam. Prikl. Mat., 18:5 (2013), 27–67
-
On positive definite piecewise linear functions and their applications
Trudy Mat. Inst. Steklova, 280 (2013), 11–40
-
Some properties of the sum of the moduli of the terms of a grouped trigonometric series
Mat. Sb., 203:6 (2012), 35–62
-
On the extremal problem about the minimum of the free term of a nonnegative trigonometric polynomial
Trudy Inst. Mat. i Mekh. UrO RAN, 17:3 (2011), 105–121
-
On the Convergence in Mean of Trigonometric Fourier Series
Mat. Zametki, 87:4 (2010), 492–501
-
On Conditions of the Average Convergence (Upper Boundedness) of Trigonometric Series
CMFD, 25 (2007), 8–20
-
Refinement of the Dirichlet–Jordan and Young's
theorems on Fourier series of functions of bounded variation
Mat. Sb., 198:6 (2007), 25–40
-
Some estimates for non-negative trigonometric polynomials and properties of these polynomials
Izv. RAN. Ser. Mat., 67:4 (2003), 3–20
-
Remarks on Mean Convergence (Boundedness) of Partial Sums of Trigonometric Series
Mat. Zametki, 71:6 (2002), 807–817
-
A Condition for Convergence in Mean of Trigonometric Series
Mat. Zametki, 69:3 (2001), 323–328
-
Use of complex analysis for deriving lower bounds for trigonometric polynomials
Mat. Zametki, 63:6 (1998), 803–811
-
Order estimates of the modulus of variation of the sum of a lacunary trigonometric series
Mat. Sb., 189:5 (1998), 3–20
-
An estimate of the free term of a non-negative trigonometric polynomial with integer coefficients
Izv. RAN. Ser. Mat., 60:6 (1996), 31–90
-
An estimate of the constant term of a nonnegative trigonometric polynomial with integer coefficients
Mat. Zametki, 59:4 (1996), 627–629
-
Non-Fourier-Lebesgue trigonometric series with nonnegative partial sums
Mat. Zametki, 59:1 (1996), 24–41
-
New examples of nonnegative trigonometric polynomials with integer coefficients
Fundam. Prikl. Mat., 1:3 (1995), 581–612
-
Some upper bounds of partial sums of a trigonometric series cannot be sharpened via lower bounds
Mat. Zametki, 58:3 (1995), 447–451
-
Examples of trigonometric series with non-negative partial sums
Mat. Sb., 186:4 (1995), 21–46
-
On an extremal problem on the minimum of a trigonometric polynomial
Izv. RAN. Ser. Mat., 57:6 (1993), 212–226
-
Local properties of some functions in the Hölder class
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 8, 13–20
-
Order estimates for best approximations and moduli of continuity of the sum of a trigonometric series with Quasi-monotone coefficients
Mat. Zametki, 51:4 (1992), 132–134
-
Norms of lacunary polynomials in functional spaces
Mat. Zametki, 51:3 (1992), 137–139
-
On upper estimates of the partial sums of a trigonometric series in terms of lower estimates
Mat. Sb., 183:11 (1992), 55–74
-
Partial sums of a trigonometric series with convex coefficients
Mat. Zametki, 50:4 (1991), 21–27
-
A problem of Salem and Zygmund on the smoothness of an analytic function that generated a Peano curve
Mat. Sb., 181:8 (1990), 1048–1060
-
Zeros of the sum of a trigonometric series with monotone coefficients
Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 12, 3–8
-
On the coefficients of trigonometric cosine-series with non-negative partial sums
Trudy Mat. Inst. Steklov., 190 (1989), 3–21
-
Two simple counterexamples relating to a problem of A. Rényi
Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 3, 13–17
-
Coefficients of trigonometric series with nonnegative partial sums
Mat. Zametki, 41:2 (1987), 152–158
-
Smoothness of the sum of a lacunary trigonometric series
Sibirsk. Mat. Zh., 28:5 (1987), 32–41
-
Power series and Peano curves
Izv. Akad. Nauk SSSR Ser. Mat., 49:4 (1985), 675–704
-
The Szidon–Zygmund inequality in the theory of lacunary trigonometric series
Mat. Zametki, 30:4 (1981), 501–515
-
A remark on everywhere divergent trigonometric series
Sibirsk. Mat. Zh., 18:1 (1977), 23–31
-
Quasianalyticity of the sum of a lacunary series
Mat. Sb. (N.S.), 99(141):3 (1976), 433–467
-
The sum of a lacunary series
Tr. Mosk. Mat. Obs., 33 (1975), 107–153
-
Study of some trigonometric series
Mat. Zametki, 13:4 (1973), 481–492
-
Everywhere divergent trigonometric series
Mat. Sb. (N.S.), 85(127):2(6) (1971), 224–237
© , 2026