RUS  ENG
Full version
PEOPLE

Belov Aleksandr Sergeevich

Publications in Math-Net.Ru

  1. On the Sum of a Trigonometric Sine Series with Monotone Coefficients

    Trudy Mat. Inst. Steklova, 319 (2022),  29–50
  2. Functions with general monotone Fourier coefficients

    Uspekhi Mat. Nauk, 76:6(462) (2021),  3–70
  3. On unimprovability of some theorems on convergence in mean of trigonometric series

    Fundam. Prikl. Mat., 22:1 (2018),  31–49
  4. Bound of remainder term of asymptotic solution one extremal problem connected with nonnegative trigonometric polynomials

    Mat. Zametki, 100:2 (2016),  303–307
  5. On the asymptotic solution of one extremal problem related to nonnegative trigonometric polynomials

    Fundam. Prikl. Mat., 18:5 (2013),  27–67
  6. On positive definite piecewise linear functions and their applications

    Trudy Mat. Inst. Steklova, 280 (2013),  11–40
  7. Some properties of the sum of the moduli of the terms of a grouped trigonometric series

    Mat. Sb., 203:6 (2012),  35–62
  8. On the extremal problem about the minimum of the free term of a nonnegative trigonometric polynomial

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:3 (2011),  105–121
  9. On the Convergence in Mean of Trigonometric Fourier Series

    Mat. Zametki, 87:4 (2010),  492–501
  10. On Conditions of the Average Convergence (Upper Boundedness) of Trigonometric Series

    CMFD, 25 (2007),  8–20
  11. Refinement of the Dirichlet–Jordan and Young's theorems on Fourier series of functions of bounded variation

    Mat. Sb., 198:6 (2007),  25–40
  12. Some estimates for non-negative trigonometric polynomials and properties of these polynomials

    Izv. RAN. Ser. Mat., 67:4 (2003),  3–20
  13. Remarks on Mean Convergence (Boundedness) of Partial Sums of Trigonometric Series

    Mat. Zametki, 71:6 (2002),  807–817
  14. A Condition for Convergence in Mean of Trigonometric Series

    Mat. Zametki, 69:3 (2001),  323–328
  15. Use of complex analysis for deriving lower bounds for trigonometric polynomials

    Mat. Zametki, 63:6 (1998),  803–811
  16. Order estimates of the modulus of variation of the sum of a lacunary trigonometric series

    Mat. Sb., 189:5 (1998),  3–20
  17. An estimate of the free term of a non-negative trigonometric polynomial with integer coefficients

    Izv. RAN. Ser. Mat., 60:6 (1996),  31–90
  18. An estimate of the constant term of a nonnegative trigonometric polynomial with integer coefficients

    Mat. Zametki, 59:4 (1996),  627–629
  19. Non-Fourier-Lebesgue trigonometric series with nonnegative partial sums

    Mat. Zametki, 59:1 (1996),  24–41
  20. New examples of nonnegative trigonometric polynomials with integer coefficients

    Fundam. Prikl. Mat., 1:3 (1995),  581–612
  21. Some upper bounds of partial sums of a trigonometric series cannot be sharpened via lower bounds

    Mat. Zametki, 58:3 (1995),  447–451
  22. Examples of trigonometric series with non-negative partial sums

    Mat. Sb., 186:4 (1995),  21–46
  23. On an extremal problem on the minimum of a trigonometric polynomial

    Izv. RAN. Ser. Mat., 57:6 (1993),  212–226
  24. Local properties of some functions in the Hölder class

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 8,  13–20
  25. Order estimates for best approximations and moduli of continuity of the sum of a trigonometric series with Quasi-monotone coefficients

    Mat. Zametki, 51:4 (1992),  132–134
  26. Norms of lacunary polynomials in functional spaces

    Mat. Zametki, 51:3 (1992),  137–139
  27. On upper estimates of the partial sums of a trigonometric series in terms of lower estimates

    Mat. Sb., 183:11 (1992),  55–74
  28. Partial sums of a trigonometric series with convex coefficients

    Mat. Zametki, 50:4 (1991),  21–27
  29. A problem of Salem and Zygmund on the smoothness of an analytic function that generated a Peano curve

    Mat. Sb., 181:8 (1990),  1048–1060
  30. Zeros of the sum of a trigonometric series with monotone coefficients

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 12,  3–8
  31. On the coefficients of trigonometric cosine-series with non-negative partial sums

    Trudy Mat. Inst. Steklov., 190 (1989),  3–21
  32. Two simple counterexamples relating to a problem of A. Rényi

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 3,  13–17
  33. Coefficients of trigonometric series with nonnegative partial sums

    Mat. Zametki, 41:2 (1987),  152–158
  34. Smoothness of the sum of a lacunary trigonometric series

    Sibirsk. Mat. Zh., 28:5 (1987),  32–41
  35. Power series and Peano curves

    Izv. Akad. Nauk SSSR Ser. Mat., 49:4 (1985),  675–704
  36. The Szidon–Zygmund inequality in the theory of lacunary trigonometric series

    Mat. Zametki, 30:4 (1981),  501–515
  37. A remark on everywhere divergent trigonometric series

    Sibirsk. Mat. Zh., 18:1 (1977),  23–31
  38. Quasianalyticity of the sum of a lacunary series

    Mat. Sb. (N.S.), 99(141):3 (1976),  433–467
  39. The sum of a lacunary series

    Tr. Mosk. Mat. Obs., 33 (1975),  107–153
  40. Study of some trigonometric series

    Mat. Zametki, 13:4 (1973),  481–492
  41. Everywhere divergent trigonometric series

    Mat. Sb. (N.S.), 85(127):2(6) (1971),  224–237


© Steklov Math. Inst. of RAS, 2026