RUS  ENG
Full version
PEOPLE

Dudov Sergey Ivanovitch

Publications in Math-Net.Ru

  1. On one consequence of the Chebyshev alternance

    Izv. Saratov Univ. Math. Mech. Inform., 25:1 (2025),  4–14
  2. Sufficient Conditions for a Minimum of a Strongly Quasiconvex Function on a Weakly Convex Set

    Mat. Zametki, 111:1 (2022),  39–53
  3. Distance between strongly and weakly convex sets

    Izv. Saratov Univ. Math. Mech. Inform., 21:4 (2021),  434–441
  4. Characterization of solutions of strong-weak convex programming problems

    Mat. Sb., 212:6 (2021),  43–72
  5. The external estimate of the compact set by Lebesgue set of the convex function

    Izv. Saratov Univ. Math. Mech. Inform., 20:2 (2020),  142–153
  6. Properties of the distance function to strongly and weakly convex sets in a nonsymmetrical space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 5,  22–38
  7. A Formula for the Superdifferential of the Distance Determined by the Gauge Function to the Complement of a Convex Set

    Mat. Zametki, 106:5 (2019),  660–668
  8. The formula for the subdifferential of the distance function to a convex set in an nonsymmetrical space

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:3 (2019),  300–309
  9. Spherical shell of the boundary of a compact set with a minimum cross-sectional area formed by a two-dimensional plane

    Zh. Vychisl. Mat. Mat. Fiz., 59:1 (2019),  169–182
  10. On an inner estimate of a convex body by the Lebesgue set of convex differentiable function

    Izv. Saratov Univ. Math. Mech. Inform., 17:3 (2017),  267–275
  11. Stability of best approximation of a convex body by a ball of fixed radius

    Zh. Vychisl. Mat. Mat. Fiz., 56:4 (2016),  535–550
  12. On functional stability of the solution for the problem of convex body best approximating by a ball with fixed radius

    Izv. Saratov Univ. Math. Mech. Inform., 15:3 (2015),  273–279
  13. On asphericity of convex body

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 2,  45–58
  14. Systematization of problems on ball estimates of a convex compactum

    Mat. Sb., 206:9 (2015),  99–120
  15. On an Approach to Approximate Solving of the Problem for the Best Approximation for Compact Body by a Ball of Fixed Radius

    Izv. Saratov Univ. Math. Mech. Inform., 14:3 (2014),  267–272
  16. Method for finding an approximate solution of the asphericity problem for a convex body

    Zh. Vychisl. Mat. Mat. Fiz., 53:10 (2013),  1668–1678
  17. Uniform estimate for a segment function in terms of a polynomial strip

    Algebra i Analiz, 24:5 (2012),  44–71
  18. The characteristic of stability of the solution in the problem of convex compact set asphericity

    Izv. Saratov Univ. Math. Mech. Inform., 11:2 (2011),  20–26
  19. Uniform estimation of a segment function by a polynomial strip of fixed width

    Zh. Vychisl. Mat. Mat. Fiz., 51:11 (2011),  1981–1994
  20. On a approximate solution of the problem of aspherical convex compact set

    Izv. Saratov Univ. Math. Mech. Inform., 10:4 (2010),  13–17
  21. External estimation of a segment function by a polynomial strip

    Zh. Vychisl. Mat. Mat. Fiz., 49:7 (2009),  1175–1183
  22. Approximation of Continuous Set-Valued Maps by Constant Set-Valued Maps with Image Balls

    Mat. Zametki, 82:4 (2007),  525–529
  23. Relations between several problems of estimating convex compacta by balls

    Mat. Sb., 198:1 (2007),  43–58
  24. On the stability of inner and outer approximations of a convex compact set by a ball

    Zh. Vychisl. Mat. Mat. Fiz., 47:10 (2007),  1657–1671
  25. Best uniform approximation of a convex compact set by a ball in an arbitrary norm

    Zh. Vychisl. Mat. Mat. Fiz., 45:3 (2005),  416–428
  26. Uniform estimate of a compact convex set by a ball in an arbitrary norm

    Mat. Sb., 191:10 (2000),  13–38
  27. On the generalized gradient of the distance function

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 61 (1999),  5–14
  28. Subdifferentiability and superdifferentiability of distance functions

    Mat. Zametki, 61:4 (1997),  530–542
  29. A fixed-tolerance problem

    Zh. Vychisl. Mat. Mat. Fiz., 37:8 (1997),  937–944
  30. Inner estimation of a convex set by a norm body

    Zh. Vychisl. Mat. Mat. Fiz., 36:5 (1996),  153–159
  31. Directional differentiability of the distance function

    Mat. Sb., 186:3 (1995),  29–52
  32. Necessary and sufficient conditions for the maximin of a function of the difference of arguments

    Zh. Vychisl. Mat. Mat. Fiz., 32:12 (1992),  1869–1884

  33. Avgust P. Khromov. Galina V. Khromova. To the 90th birthday anniversary

    Izv. Saratov Univ. Math. Mech. Inform., 25:4 (2025),  600–606
  34. In memory of Alexandr Yu. Vasiliev

    Izv. Saratov Univ. Math. Mech. Inform., 17:1 (2017),  117–121
  35. Evgenii Sergeevich Polovinkin (on his 70th birthday)

    Uspekhi Mat. Nauk, 71:5(431) (2016),  187–190
  36. Avgust Petrovich Khromov (on his 75th birthday)

    Izv. Saratov Univ. Math. Mech. Inform., 10:3 (2010),  92–93
  37. Avgust Petrovich Khromov

    Izv. Saratov Univ. Math. Mech. Inform., 7:2 (2007),  82–84
  38. Petr Lavrentievich Ulianov

    Izv. Saratov Univ. Math. Mech. Inform., 7:1 (2007),  89–93


© Steklov Math. Inst. of RAS, 2026