RUS  ENG
Full version
PEOPLE
Bloshanskii Igor Leionidovich
Bloshanskii Igor Leionidovich
Professor
Doctor of physico-mathematical sciences (1991)

Speciality: 01.01.01 (Real analysis, complex analysis, and functional analysis)
Birth date: 14.10.1952
E-mail:
Keywords: multiple trigonometric Fourier series, Walsh–Fourier series, Fourier integrals, generalized localization, weak generalized localization, convergence, divergence, Weyl multipliers, structure and geometry characteristics of sets of convergence and divergence, lacunary sequences.
UDC: 517.5, 517.51

Subject:

Real Analysis, multidimensional Harmonic Analysis, problems of convergence of multiple Fourier expansions


Main publications:
  1. I. L. Bloshanskii, “Uniform convergence of expansions into a multiple trigonometric Fourier series or a Fourier integral”, Math. Notes, 18:2 (1975), 675–684  mathnet  crossref  mathscinet  zmath
  2. I. L. Bloshanskii, “Equiconvergence of expansions in a multiple Fourier series and Fourier integral for summation over squares”, Math. USSR-Izv., 10:3 (1976), 652–671  mathnet  crossref  mathscinet  zmath
  3. I. L. Bloshanskii, “On the convergence of double Fourier series of functions from $L_p$, $p>1$”, Math. Notes, 21:6 (1977), 438–444  mathnet  crossref  mathscinet  zmath
  4. I. L. Bloshanskii, “Generalized localization almost everywhere and convergence of double Fourier series”, Sov. Math. Dokl., 19 (1978), 1019-1023  mathnet  mathscinet  mathscinet  zmath
  5. I. L. Bloshanskii, “Generalized localization and convergence tests for double trigonometric Fourier series of functions from $L_p$, $p > 1$”, Analysis Mathematica, 7:1 (1981), 3-36  crossref  mathscinet  zmath  scopus
  6. I. L. Bloshanskii, “Generalized lokalization for multiple Fourier series and the geometry of measurable sets in N-dimensional space”, Soviet Math. Dokl., 26 (1982), 405–409  mathnet  mathscinet  mathscinet  zmath
  7. I. L. Bloshanskii, “On the geometry of measurable sets in $N$-dimensional space on which generalized localization holds for multiple trigonometric Fourier series of functions from $L_p$, $p>1$”, Math. USSR-Sb., 49:1 (1984), 87–109  mathnet  crossref  mathscinet  zmath
  8. I. L. Bloshanskii, “On criteria for weak generalized localization in $N$-dimensional space”, Sov. Math. Dokl., 28 (1983), 244-248  mathnet  mathscinet  zmath
  9. I. L. Bloshanskii, “Two criteria for weak generalized localization for multiple trigonometric Fourier series of functions in $L_p$, $p\geqslant1$”, Math. USSR-Izv., 26:2 (1986), 223–262  mathnet  crossref  mathscinet  zmath
  10. I. L. Bloshanskii, “On the divergence of a Fourier series almost everywhere on a given set, and convergence to zero outside it”, Sov. Math., Dokl., 31 (1985), 139-142  mathnet  mathscinet  zmath  zmath
  11. 15. I. L. Bloshanskii, “On maximal sets of convergence and unbounded divergence of multiple Fourier series of functions in $L_1$ that are equal to zero on a given set”, Sov. Math., Dokl, 32 (1985), 232-235  mathnet  mathscinet  zmath
  12. 16. I. L. Bloshanskii, “On some questions of square convergence of multiple Fourier series and integrals of functions in $L_1$”, Sov. Math., Dokl., 35:3 (1987), 475-478  mathnet  mathscinet  mathscinet  zmath
  13. I. L. Bloshanskii, “On the existence of functions from $L_p$, $p \ge 1$., whose Fourier series converge to zero on a prescribed set and diverge unboundedly outside it.”, Analysis Mathematica, 14:1 (1988), 139-155  crossref  mathscinet  zmath  scopus
  14. I. L. Bloshanskii, “The structure and geometry of maximal sets of convergence and unbounded divergence almost everywhere of multiple Fourier series of functions in $L_1$ equal to zero on a given set”, Math. USSR-Izv., 35:1 (1990), 1–35  mathnet  crossref  mathscinet  zmath
  15. I. L. Bloshanskii, “Multiple Fourier integral and multiple Fourier series under square summation”, Sib. Math. J., 31:1 (1990), 30–42  mathnet  crossref  mathscinet  zmath  isi  scopus
  16. I. L. Bloshanskii, “Weyl multipliers and the growth of the partial sums of rectangularly summable multiple trigonometric Fourier series”, Soviet Math. Dokl., 44:3 (1992), 749–752  mathnet  mathscinet  zmath
  17. 16. I. L. Bloshanskii, “Correlation between the structure and geometry of sets of unbounded divergence and a method of summing a multiple Fourier series of a function in $L_p$, $p>1$, that is equal to zero on a certain set”, Sov. Math., Dokl., 44:3 (1992), 843-847  mathnet  mathscinet  zmath
  18. I. L. Bloshanskii, “On sequences of linear operators”, Proc. Steklov Inst. Math., 201 (1994), 35–63  mathnet  mathscinet  zmath
  19. I. L. Bloshanskii, “The exact Weyl multiplier for the validity of generalized localization on any open sets for rectangularly summed tree-dimensional Fourier series”, Soviet Math. Dokl., 45:1 (1992), 215–220  mathnet  mathscinet  zmath
  20. I. L. Bloshanskii, S. K. Bloshanskaya, “Generalized and weak generalized localization for multiple Fourier-Walsh functions in $L_p, p\ge1$”, Soviet Math. Dokl., 48:2 (1994), 359–364  mathnet  mathnet  mathscinet  mathscinet  zmath
  21. S. K. Bloshanskaya, I. L. Bloshanskii, “Generalized localization for the multiple Walsh–Fourier series of functions in $L_p$, $p\geqslant 1$”, Sb. Math., 186:2 (1995), 181–196  mathnet  crossref  mathscinet  zmath  isi
  22. I. L. Bloshanskii, O. K. Ivanova, T. Yu. Roslova, “Generalized localization and equiconvergence of expansions in double trigonometric series and in the Fourier integral for functions from $L(\ln^+L)^2$”, Math. Notes, 60:3 (1996), 324–327  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  23. , I. L. Bloshanskii, S. K. Bloshanskaya, “Weak generalized localization for multiple Fourier–Walsh series of functions in $L_p$, $p\ge 1$”, Proc. Steklov Inst. Math., 214 (1996), 77–100  mathnet  mathscinet  zmath
  24. I. L. Bloshanskii, S. K. Bloshanskaya, T. Yu. Roslova, “Generalized localization for the double trigonometric Fourier series and the Walsh–Fourier series of functions in $L\log^+L\log^+\log^+L$”, Sb. Math., 189:5 (1998), 657–682  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus
  25. I. L. Bloshanskii, T. A. Matseevich, “Slabaya obobschennaya lokalizatsiya dlya kratnykh ryadov Fure nepreryvnykh funktsii s nekotorym modulem nepreryvnosti”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza. Sbornik statei, Izdatelstvo AFTs, g. Moskva, 1999, 37 – 56 (ISBN 5-93379-002-8).  mathscinet
  26. I. L. Bloshanskii, “O mnozhestvakh neogranichennoi raskhodimosti v kazhdoi tochke kratnogo ryada Fure funktsii, ravnoi nulyu na zamknutom mnozhestve”, Analysis Mathematica, 26:2 (2000), 81 -98  crossref  mathscinet  zmath  elib
  27. I. L. Bloshanskii, “A criterion for weak generalized localization in the class $L_1$ for multiple Fourier trigonometric series from the point of view of isometric transformations”, Math. Notes, 71:4 (2002), 464–476  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
  28. I. L. Bloshanskii, “Structural and Geometric Characteristics of Sets of Convergence and Divergence of Multiple Fourier Series of Functions which Equal Zero on Some Set”, International Journal of Wavelets, Multiresolution and Information Processing, 2:2, World Scientific Publishing Company. New Jersey - London- Singapore - Hong Kong (2004), 187 -195 (ISBN 981-238-342-5/hbk/set)  crossref  mathscinet  zmath
  29. I. L. Bloshanskii, “Linear transformations of $R^N$ and problems of convergence of multiple Fourier integral”, Wavelet Analysis and Active Media Technology. Proceedings of the 6-th International Progress, 3, World Scientific Publishing Company, New Jersey – London – Singapore – Hong Kong., 2005, 1061 –1091.
  30. I. L. Bloshanskii, T. A. Matseevich, “A Weak Generalize Localization of Multiple Fourier Series of Continuous Functions with a Certain Module of Continuity”, Journal of Mathematical Sciences, 155:1 (2008), 31–46  mathnet  crossref  mathscinet  zmath  scopus
  31. I. L. Bloshanskii, “Linear transformations of $R^N$ and problems of convergence of multiple Fourier Series of functions which equal zero on some set.”, Applied and Numerical Harmonic Analysis. Springer Book Series (SCI). Volume “Wavelet Analysis and Applications”., Selected papers based on the presentations at the conference (WAA 2005), Macau, China, 29th November – 2nd December 2005. With CD-ROM., (ISBN 3-7643-7777-1/hbk), Basel: Birkhäuser, 2007, 13 – 24.  crossref  mathscinet  zmath
  32. I. L. Bloshanskii, S. K. Bloshanskaya, “Local Smoothness Conditions on a Function which Guarantee Convergence of Double Walsh-Fourier Series of this Function”, Applied and Numerical Harmonic Analysis. Springer Book Series (SCI). Volume “Wavelet Analysis and Applications”, Basel: Birkhaüser, 2007, 3 – 11 (ISBN 3-7643-7777-1/hbk)  mathscinet  zmath
  33. I. L. Bloshanskii, T .A. Matseevich, “A weak generalized localization of multiple Fourier series of continuous functions with a certain module of continuity.”, J. Math. Sci., New York, 155:1 (2008), 31–46  mathnet  crossref  mathscinet  zmath  scopus
  34. I. L. Bloshanskii, “Strukturnye i geometricheskie kharakteristiki mnozhestv skhodimosti i raskhodimosti kratnykh razlozhenii Fure funktsii, ravnykh nulyu na nekotorom mnozhestve”, Vestnik MGOU, 2007, 3-13 (to appear)  mathscinet  zmath  elib
  35. I. L. Bloshanskii, O. V. Lifantseva, “Weak Generalized Localization for Multiple Fourier Series Whose Rectangular Partial Sums Are Considered with Respect to Some Subsequence”, Math. Notes, 84:3 (2008), 314–327  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
  36. I. L. Bloshanskii, O. V. Lifantseva, “A weak generalized localization criterion for multiple Fourier series whose rectangular partial sums are considered over a subsequence”, Dokl. Math., 78:3 (2008), 864-867  crossref  mathscinet  zmath  elib  scopus
  37. I. L. Bloshanskii, Information computing and automation. Proceedings of the international conference, China, December 20–22, 2007. 3 Vols. (English), eds. Li, Jian Ping; Bloshanskii, Igor ; Ni, Lionel M.; Pandey, S. S.; Yang, Simon X., Hackensack, NJ: World Scientific, 2008, 1554 pp.  zmath
  38. I. L. Bloshanskii, O. V. Lifantseva, “Maximal Sets of Convergence and Unbounded Divergence of Multiple Fourier Series with $J_k$-Lacunary Sequence of Partial Sums”, Math. Notes, 86:6 (2009), 883–886  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
  39. I. L. Bloshanskii, “Linear Transformations of $R^N$ and Problems of Convergence of Multiple Fourier Series of Functions in $L_p, p > 1$”, Acta Sci. Math., 75:34 (2009), 575 –603, ISBN 0016969. (Szeged (Hungary))  mathscinet  zmath  elib
  40. I. L. Bloshanskii, O. V. Lifantseva, “On $J_k$-lacunary sequences of rectangular partial sums of multiple Fourier series”, Progress in analysis. Proceedings of the 8th congress of the International Society for Analysis, its Applications, and Computation (ISAAC) (Russia, August 22–27, 2011.), 2, Moscow: Peoples’ Friendship University of Russia, 2012, 257-264 (ISBN 978-5-209-04590-8/hbk)  zmath
  41. I. L. Bloshanskii, S. K. Bloshanskaya, O. V. Lifantseva, “Trigonometric Fourier Series and Walsh–Fourier Series with Lacunary Sequence of Partial Sums”, Math. Notes, 93:2 (2013), 332–336  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
  42. I. L. Bloshanskii, D. A. Grafov, “Equiconvergence of Expansions in Multiple Trigonometric Fourier Series and Integrals in the Case of a Lacunary Sequence of Partial Sums”, Doklady Mathematics, 87:3 (2013), 1–4  crossref  mathscinet  zmath  elib  scopus
  43. I. L. Bloshanskii, O. V. Lifantseva, “Structural and Geometric Characteristics of Sets of Convergence and Divergence of Multiple Fourier Series with Jk -lacunary Sequence of Rectangular Partial Sums”, Analysis Mathematica, 39:2 (2013), 93 - 121, (ISSN: 0133-3852).  crossref  mathscinet  zmath  elib  scopus
  44. I. L. Bloshanskii, S K. Bloshanskaya, O. V. Lifantseva, “Multiple Fourier Expansions over Walsh-Paley and Trigonometric Systems”, ‘Kangro-100. Methods of Analysis and Algebra International Conference dedicated to the Centennial of Professor Gunnar Kangro’' (Tartu, Estonia, September 1-6, 2013), Institute of Mathematics, University of Tartu, Estonian Mathematical Society. Tartu, 2013, 85-86 (ISBN: 978-9949-9180-6-5).
  45. I. L. Bloshanskii, D. A. Grafov, ““Almost” Cauchy Property for the Sequence of Partial Sums of Fourier Series of Functions in $L_p$, $p > 1$”, ‘Kangro-100. Methods of Analysis and Algebra International Conference dedicated to the Centennial of Professor Gunnar Kangro’' (Tartu, Estonia, September 1-6, 2013), Institute of Mathematics, University of Tartu, Estonian Mathematical Society., Tartu, 2013, 63-64. (ISBN: 978-9949-9180-6-5).
  46. I. L. Bloshanskii, O. V. Lifantseva, “Structural and Geometric Characteristics of Sets of Convergence and Divergence of Multiple Fourier Series with $J_k$ -lacunary Sequence of Rectangular Partial Sums”, Analysis Mathematica, 39:2 (2013), 93 - 121 (ISSN: 0133-3852)  crossref  mathscinet  zmath  elib
  47. I. L. Bloshanskii, Z. N. Tsukareva, “Localization for Multiple Fourier Series with "$J_k$-Lacunary Sequence of Partial Sums" in Orlicz Classes”, Math. Notes, 95:1 (2014), 22–31  mathnet  crossref  crossref  mathscinet  isi  elib  elib  scopus
  48. I. L. Bloshanskii, S. K. Bloshanskaya, “A weak generalized localization criterion for multiple Walsh–Fourier series with $J_k$-lacunary sequence of rectangular partial sums”, Proc. Steklov Inst. Math., 285 (2014), 34–55  mathnet  crossref  crossref  isi  elib  elib  scopus
  49. I. L. Bloshanskii, D. A. Grafov, “Ravnoskhodimost razlozhenii v kratnyi ryad i integral Fure, “pryamougolnye chastichnye summy” kotorykh rassmatrivayutsya po nekotoroi podposledovatelnosti”, Analysis Mathematica, 40:3 (2014), 175-196, (ISSN: 0133-3852).  crossref  mathscinet  zmath  scopus
  50. I. L. Bloshanskii, D. A. Grafov, “Equiconvergence of expansions in multiple trigonometric Fourier series and Fourier integral with " $J_k$ - lacunary sequences of rectangular partial sums"”, Acta Et Commentationes Universitatatis Tartuensis de Mathematica, 18:1 (2014), 69–79, (ISSN: 1406-2283), http://acutm.math.ut.ee/index.php/acutm/article/view/ACUTM.2014.18.08/24  crossref  mathscinet  scopus
  51. I. L. Bloshanskii, D. A. Grafov, “Sufficient conditions for convergence almost everywhere of multiple trigonometric Fourier series with lacunary sequence of partial sums”, Real Analysis Exchange, Vol. 41(1) (2015/2016), 159–172, (ISSN: 0147-1937).  crossref  mathscinet  zmath  scopus
  52. I. L. Bloshanskii, D. A. Grafov, “Equiconvergence of Expansions in Multiple Fourier Series and in Fourier Integrals with “Lacunary Sequences of Partial Sums””, Math. Notes, 99:2 (2016), 196–209  mathnet  crossref  crossref  mathscinet  isi  elib  elib  scopus
  53. I. L. Bloshanskii, S. K. Bloshanskaya, “Convergence and localization in Orlicz classes for multiple Walsh-Fourier series with a lacunary sequence of rectangular partial sums”, J. Math. Anal. Appl., 435 (2016), 765–782, ISSN: 0022-247X (http://dx.doi.org/10.1016/j.jmaa.2015.10.018)  crossref  mathscinet  zmath  isi  elib  scopus
  54. I .L. Bloshanskii, S. K. Bloshanskaya, D. A. Grafov, Sufficient conditions for convergence of multiple Fourier series with Jk-lacunary sequence of rectangular partial sums in terms of Weyl multipliers, 2017 (Published online), 29 pp., arXiv: 1704.04673 [math.CA].  mathscinet  zmath
  55. I. L. Bloshanskii, S. K. Bloshanskaya, D. A. Grafov, “Sufficient conditions for convergence of multiple Fourier series with Jk-lacunary sequence of rectangular partial sums in terms of Weyl multiplier”, Acta Sci. Math., 83:3-4 (2017), 511–537, ISSN: 0001-6969, (Szeged (Hungary)  crossref  mathscinet  zmath  isi  scopus

Publications in Math-Net.Ru

Talks and lectures

Personal pages:

Organisations:


© Steklov Math. Inst. of RAS, 2026