RUS  ENG
Full version
PEOPLE

Denisov Victor Mikhailovich

Publications in Math-Net.Ru

  1. High temperature heat capacity of germanate CaEr$_2$Ge$_4$O$_{12}$

    Fizika Tverdogo Tela, 66:5 (2024),  676–678
  2. Heat capacity of oxide compounds formed in the Na$_2$O–TiO$_2$(WO$_3$), K$_2$O–B$_2$O$_3$(WO$_3$) and Cs$_2$O–TeO$_2$(UO$_3$) systems

    Fizika Tverdogo Tela, 65:11 (2023),  2016–2019
  3. High temperature heat capacity and thermodynamic properties of CaEu$_2$Ge$_4$O$_{12}$ and CaHo$_2$Ge$_4$O$_{12}$ germanates in the range of 320–1050 K

    Fizika Tverdogo Tela, 65:10 (2023),  1821–1824
  4. High-temperature heat capacity of Li, Sc-germanate LiScGeO$_4$ and Li, Sc-silicate LiScSiO$_4$

    Fizika Tverdogo Tela, 65:9 (2023),  1515–1518
  5. Heat capacity of alkali metal silicates

    Fizika Tverdogo Tela, 65:3 (2023),  478–481
  6. Crystal structure and thermodynamic properties of germanate CuEu$_2$Ge$_2$O$_8$

    Fizika Tverdogo Tela, 64:12 (2022),  2090–2093
  7. Synthesis, crystal structure and high-temperature heat capacity of substituted apatites Pb$_9R$(GeO$_4$)$_3$(VO$_4$)$_3$ ($R$ = Tb, Dy, Ho)

    Fizika Tverdogo Tela, 64:11 (2022),  1643–1647
  8. Synthesis, crystal structure and thermodynamic properties of apatite Pb$_3$Bi$_2$(GeO$_4$)$_3$

    Fizika Tverdogo Tela, 64:7 (2022),  886–890
  9. Synthesis, crystal structure, and thermal properties of substituted titanates Bi$_{2}$Pr$_{2}$Ti$_{3}$O$_{12}$ and Bi$_{2}$Nd$_{2}$Ti$_{3}$O$_{12}$

    Fizika Tverdogo Tela, 63:8 (2021),  1056–1061
  10. Heat capacity and thermodynamic functions of GdGaTi$_{2}$O$_{7}$ in the temperature range of 320–1000 K

    Fizika Tverdogo Tela, 63:4 (2021),  471–474
  11. Synthesis, crystal structure, luminescence, and thermophysical properties of TbGaGe$_{2}$O$_{7}$

    Fizika Tverdogo Tela, 63:1 (2021),  76–79
  12. Synthesis, structure, and thermophysical properties of Pb$_{10-x}$Bi$_{x}$(GeO$_{4}$)$_{2+x}$(VO$_{4}$)$_{4-x}$ ($x$ = 0 – 3) in the temperature range of 350–950 K

    Fizika Tverdogo Tela, 62:11 (2020),  1828–1833
  13. Synthesis, structure, and thermal properties of the YVO$_4$–BiVO$_{4}$ oxides

    Fizika Tverdogo Tela, 62:4 (2020),  640–644
  14. Structure and thermodynamic properties of the SmGaGe$_{2}$O$_{7}$ oxide

    Fizika Tverdogo Tela, 62:2 (2020),  332–335
  15. Heat capacity of Pb$_{10-x}$Nd$_{x}$(GeO$_{4}$)$_{2+x}$(VO)$_{4-x}$ ($x$ = 0–3) apatites

    Fizika Tverdogo Tela, 61:7 (2019),  1397–1400
  16. Specific heat of the Er$_{2}$Ge$_{2}$O$_7$–Er$_{2}$Sn$_{2}$O$_{7}$ solid solutions in the temperature range of 350–1000 K

    Fizika Tverdogo Tela, 61:4 (2019),  660–663
  17. High-temperature heat capacity of Zn$_{2}$V$_{2}$O$_{7}$–Cu$_{2}$V$_{2}$O$_{7}$ solid solutions

    Fizika Tverdogo Tela, 60:7 (2018),  1298–1302
  18. High-temperature heat capacity of germanates Pr$_{2}$Ge$_{2}$O$_{7}$ and Nd$_{2}$Ge$_{2}$O$_{7}$ within 350–1000 K

    Fizika Tverdogo Tela, 60:3 (2018),  618–622
  19. High-temperature specific heat of the TmBiGeO$_{5}$ and YbBiGeO$_{5}$ compounds

    Fizika Tverdogo Tela, 60:2 (2018),  262–264
  20. High-temperature heat capacity of CdO–V$_{2}$O$_{5}$ oxides

    Fizika Tverdogo Tela, 59:12 (2017),  2490–2494
  21. High-temperature heat capacity of samarium and erbium titanates with pyrochlore structure

    Fizika Tverdogo Tela, 59:12 (2017),  2299–2302
  22. High-temperature specific heat of Bi$_{2}$GeO$_{5}$ and SmBiGeO$_{5}$

    Fizika Tverdogo Tela, 59:8 (2017),  1659–1662
  23. High-temperature heat capacity of oxides of the CuO–V$_{2}$O$_{5}$ system

    Fizika Tverdogo Tela, 59:6 (2017),  1243–1246
  24. High-temperature heat capacity of YBiGeO$_{5}$ and GdBiGeO$_{5}$ in the range 373–1000 K

    Fizika Tverdogo Tela, 59:5 (2017),  1019–1022
  25. High-temperature heat capacity of orthovanadates Ce$_{1-x}$Bi$_{x}$VO$_{4}$

    Fizika Tverdogo Tela, 58:9 (2016),  1867–1870
  26. High-temperature heat capacity of stannates Pr$_{2}$Sn$_{2}$O$_{7}$ and Nd$_{2}$Sn$_{2}$O$_{7}$

    Fizika Tverdogo Tela, 58:7 (2016),  1259–1262
  27. Heat capacity and thermodynamic properties of HoMnO$_{3}$ in the range of 364–1046 K

    Fizika Tverdogo Tela, 58:3 (2016),  469–472
  28. Heat capacity of rare-earth cuprates, orthovanadates, and aluminum garnets, gallium garnets, and iron garnets

    Fizika Tverdogo Tela, 57:8 (2015),  1658–1662
  29. Heat capacity of RVO$_4$ (R = La–Gd) orthovanadates

    Fizika Tverdogo Tela, 57:5 (2015),  1034–1037
  30. High-temperature heat capacity of YVO$_4$

    Fizika Tverdogo Tela, 56:12 (2014),  2305–2307
  31. Heat capacity of oxides in the Bi$_2$O$_3$–SiO$_2$ system

    Fizika Tverdogo Tela, 56:10 (2014),  2076–2078
  32. Heat capacity of $Ln_2$CuO$_4$ ($Ln$ = La–Gd) cuprates

    Fizika Tverdogo Tela, 56:9 (2014),  1863–1866
  33. Heat capacity of $Ln_2$Cu$_2$O$_5$ ($Ln$ = Tb–Lu) cuprates

    Fizika Tverdogo Tela, 56:7 (2014),  1436–1438
  34. High-temperature heat capacity of TbFe$_3$(BO$_3$)$_4$

    Fizika Tverdogo Tela, 56:5 (2014),  892–894
  35. High-temperature heat capacity of Y$_2$Cu$_2$O$_5$

    Fizika Tverdogo Tela, 56:5 (2014),  888–891
  36. Study of the heat capacity of Lu$_2$Cu$_2$O$_5$ in the temperature range 366–992 K

    Fizika Tverdogo Tela, 56:3 (2014),  620–622
  37. Heat capacity of Tm$_2$Cu$_2$O$_5$ in the temperature range 431–1004 K

    Fizika Tverdogo Tela, 56:2 (2014),  412–414
  38. High-temperature heat capacity of YFe$_3$(BO$_3$)$_4$

    Fizika Tverdogo Tela, 56:2 (2014),  276–278
  39. Heat capacity of Tb$_2$Cu$_2$O$_5$ in the temperature range 379–924 K

    Fizika Tverdogo Tela, 55:12 (2013),  2484–2486
  40. High-temperature heat capacity of Gd$_2$CuO$_4$

    Fizika Tverdogo Tela, 55:10 (2013),  1918–1921
  41. High-temperature heat capacity of Sm$_2$CuO$_4$ and Ho$_2$Cu$_2$O$_5$

    Fizika Tverdogo Tela, 55:10 (2013),  1908–1911
  42. High-temperature heat capacity of Dy$_2$Cu$_2$O$_5$

    Fizika Tverdogo Tela, 55:9 (2013),  1714–1716
  43. High-temperature heat capacity of La$_2$CuO$_4$

    Fizika Tverdogo Tela, 55:7 (2013),  1285–1287
  44. High-temperature heat capacity of CuGa$_2$O$_4$

    Fizika Tverdogo Tela, 55:6 (2013),  1244–1246
  45. High-temperature heat capacity of CuGeO$_3$ and Cu$_{0.9}$Yb$_{0.1}$GeO$_3$

    Fizika Tverdogo Tela, 55:5 (2013),  1014–1016
  46. High-temperature heat capacity of Y$_{2.9}$Ho$_{0.1}$Al$_5$O$_{12}$

    Fizika Tverdogo Tela, 55:4 (2013),  636–638
  47. Theoretical study of sorption and diffusion of lithium atoms on the surface of crystalline silicon and inside it

    Pis'ma v Zh. Èksper. Teoret. Fiz., 97:11 (2013),  732–736
  48. Высокотемпературная теплоемкость BaFe$_{12}$O$_{19}$ и BaSc$_{0.5}$Fe$_{11.5}$O$_{19}$

    Fizika Tverdogo Tela, 54:12 (2012),  2229–2231
  49. High-temperature heat capacity of Y$_{2.93}$Ho$_{0.07}$Fe$_5$O$_{12}$

    Fizika Tverdogo Tela, 54:11 (2012),  2073–2075
  50. High-temperature heat capacity of copper metaborate CuB$_2$O$_4$

    Fizika Tverdogo Tela, 54:10 (2012),  2012–2014
  51. High-temperature heat capacity of Bi$_2$CuO$_4$

    Fizika Tverdogo Tela, 54:9 (2012),  1820–1822
  52. High-temperature heat capacity of the BiFeO$_3$ multiferroic

    Fizika Tverdogo Tela, 54:6 (2012),  1234–1236
  53. A study of Bi$_2$Al$_4$O$_9$ heat capacity in the range 298–1000 K

    Fizika Tverdogo Tela, 54:6 (2012),  1069–1071
  54. Study of the high-temperature heat capacity of PbSiO$_3$ and Pb$_2$SiO$_4$

    Fizika Tverdogo Tela, 54:1 (2012),  202–204
  55. High-temperature heat capacity of oxides in the Bi$_2$O$_3$–SiO$_2$ and Bi$_2$O$_3$–GeO$_2$ systems

    Fizika Tverdogo Tela, 53:10 (2011),  2069–2071
  56. Thermal conductivity of the PbGeO$_3$ and PbGe$_3$O$_7$ glasses

    Fizika Tverdogo Tela, 53:10 (2011),  1923–1924
  57. High-temperature heat capacity of oxides in the GeO$_2$–PbO system

    Fizika Tverdogo Tela, 53:4 (2011),  642–646
  58. Thermophysical properties of Bi$_{12}$GeO$_{20}$ single crystals

    TVT, 48:5 (2010),  790–792
  59. Magnetic susceptibility, molar volume, and surface tension of molten $\mathrm{Ge}$$\mathrm{Pd}$ alloys

    Dokl. Akad. Nauk SSSR, 277:4 (1984),  840–841


© Steklov Math. Inst. of RAS, 2026