RUS  ENG
Full version
PEOPLE

Stepovich Mikhail Adolfovich

Publications in Math-Net.Ru

  1. On the projection method for solving the heat equation with lumped heat capacity

    Izv. Saratov Univ. Math. Mech. Inform., 25:2 (2025),  173–183
  2. On the application of the Galerkin projection method to the nonstationary diffusion equation with a variable coefficient

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 233 (2024),  89–98
  3. On the application of the qualitative theory of differential equations to a problem of heat and mass transfer

    Izv. Saratov Univ. Math. Mech. Inform., 23:1 (2023),  48–57
  4. On the well-posedness of a model problem of heat and mass transfer in homogeneous semiconductor targets

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 206 (2022),  133–137
  5. On the solution of a nonstationary problem of heat and mass transfer in a multilayer medium by the method of integral representations

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 204 (2022),  66–73
  6. On the search for moment functions of a solution of the stochastic diffusion equation by the projection method

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 200 (2021),  105–114
  7. Application of generalized Bers degrees, the matrix method, and the Fourier method for solving the nonstationary heat equation in a multilayer medium

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 199 (2021),  50–59
  8. On the well-posedness of mathematical models of diffusion due to a sharply focused electron probe in a homogeneous semiconductor material

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 193 (2021),  122–129
  9. On the calculation of the moment functions of a stochastic heat conduction process by using the projection method

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 192 (2021),  102–110
  10. On the correctness of mathematical models of diffusion and cathodoluminescence

    Taurida Journal of Computer Science Theory and Mathematics, 2021, no. 1,  81–100
  11. On the use of Hankel transformation in mathematical modeling of catodoluminescence in a homogeneous semiconductor material

    Taurida Journal of Computer Science Theory and Mathematics, 2020, no. 1,  92–107
  12. Comparative analysis of the matrix method and the finite-difference method for modeling the distribution of minority charge carriers in a multilayer planar semiconductor structure

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 172 (2019),  104–112
  13. The projection Galerkin method for solving the time-independent differential diffusion equation in a semi-infinite domain

    Zh. Vychisl. Mat. Mat. Fiz., 57:5 (2017),  801–813


© Steklov Math. Inst. of RAS, 2026