RUS  ENG
Full version
PEOPLE

Kulikov Igor' Mikhailovich

Publications in Math-Net.Ru

  1. Using a viscosity matrix to construct a Riemann solver for the equations of special relativistic hydrodynamics

    Sib. Zh. Vychisl. Mat., 28:1 (2025),  75–87
  2. Using piecewise parabolic reconstruction of physical variables in Rusanov’s solver. II. Special relativistic magnetohydrodynamics equations

    Sib. Zh. Ind. Mat., 27:1 (2024),  29–42
  3. Using piecewise parabolic reconstruction of physical variables in the Rusanov solver. I. The special relativistic hydrodynamics equations

    Sib. Zh. Ind. Mat., 26:4 (2023),  49–64
  4. On a Godunov-type numerical scheme for describing the gas and dust components in problems of star formation

    Sib. Zh. Ind. Mat., 26:1 (2023),  85–97
  5. Using low dissipation Lax-Friedrichs scheme for numerical modeling of relativistic flows

    Sib. Zh. Vychisl. Mat., 26:4 (2023),  389–400
  6. Using piecewise-parabolic reconstruction of physics variables to constructing a low-dissipation HLL method for numerical solution of special relativistic hydrodynamics equations

    Sib. Zh. Vychisl. Mat., 26:1 (2023),  57–75
  7. Supercomputer modelling of magnetohydrodynamical flows in cosmic plasma

    Sib. Zh. Ind. Mat., 25:4 (2022),  14–26
  8. Mathematical simulation of nuclear carbon burning in White Dwarfs using a 7-isotope reaction network

    Sib. Zh. Ind. Mat., 25:3 (2022),  55–66
  9. Mathematical modeling of high-speed collision of White Dwarfs — explosion mechanism of type Ia/Iax supernovae

    Sib. Zh. Ind. Mat., 25:1 (2022),  80–91
  10. Using piecewise-linear reconstruction to constructing a low-dissipation HLL method for numerical solution of hydrodynamics equation

    Sib. Zh. Vychisl. Mat., 25:2 (2022),  141–156
  11. Mathematical simulation of turbulent combustion of carbon in the problems of white dwarf mergers and explosions of the type Ia supernovae

    Sib. Zh. Ind. Mat., 24:3 (2021),  30–38
  12. On a computational model of gravitational hydrodynamics with consideration of the radiation transfer in the diffusion approximation using tetrahedral meshes

    Sib. Zh. Ind. Mat., 24:2 (2021),  87–96
  13. Application of geodesic grids for modeling the hydrodynamic processes in spherical objects

    Sib. Zh. Ind. Mat., 23:4 (2020),  77–87
  14. On a modification of the Rusanov solver for the equations of special relativistic magnetic hydrodynamics

    Sib. Zh. Ind. Mat., 23:3 (2020),  53–64
  15. The use of the piecewise parabolic method on a local stencil for constructing a low dissipation of a numerical solution scheme for mathematical modeling of special relativistic hydrodynamic flows

    Sib. Zh. Vychisl. Mat., 23:2 (2020),  143–154
  16. An algorithm for recovering the characteristics of the initial state of supernova

    Zh. Vychisl. Mat. Mat. Fiz., 60:6 (2020),  1035–1044
  17. Development of a system for performance analysis of mobile applications

    Program Systems: Theory and Applications, 7:2 (2016),  127–135
  18. Numerical hydrodynamics simulation of astrophysical flows at Intel Xeon Phi supercomputers

    Vestn. YuUrGU. Ser. Vych. Matem. Inform., 5:4 (2016),  77–97
  19. A multilevel approach to algorithm and software design for exaflops supercomputers

    Num. Meth. Prog., 16:4 (2015),  543–556
  20. Computation of discontinuous solutions of fluid dynamics equations with entropy nondecrease guarantee

    Zh. Vychisl. Mat. Mat. Fiz., 54:6 (2014),  1008–1021
  21. Numerical and experimental simulation of wave formation during explosion welding

    Trudy Mat. Inst. Steklova, 281 (2013),  16–31
  22. AstroPhi : a hydrodynamical code for complex modelling of astrophysical objects dynamics by means of hybrid architecture supercomputers on Intel Xeon Phi base

    Vestn. YuUrGU. Ser. Vych. Matem. Inform., 2:4 (2013),  57–79


© Steklov Math. Inst. of RAS, 2026