RUS  ENG
Full version
PEOPLE

Kiselev Sergei Petrovich

Publications in Math-Net.Ru

  1. Mechanism of aluminum coating formation on a titanium substrate during cold gas dynamic spraying

    Prikl. Mekh. Tekh. Fiz., 66:4 (2025),  47–57
  2. Vortex structures in supersonic jets exhausting into a submerged space

    Prikl. Mekh. Tekh. Fiz., 65:3 (2024),  56–68
  3. Numerical simulation of a nanoparticle collision with a target by the molecular dynamics method under the conditions of cold gas-dynamic spraying

    Prikl. Mekh. Tekh. Fiz., 64:6 (2023),  27–35
  4. Smoothed particle hydrodynamics method used for numerical simulation of impact between an aluminum particle and a titanium obstacle

    Prikl. Mekh. Tekh. Fiz., 63:6 (2022),  150–165
  5. Numerical simulation of fracture of titanium and aluminum nanocrystals by the molecular dynamics method

    Fizika Goreniya i Vzryva, 57:4 (2021),  115–129
  6. Numerical simulation of fracture of nanocrystals of the TiAl$_3$ intermetallic compound by the molecular dynamics method

    Prikl. Mekh. Tekh. Fiz., 62:3 (2021),  71–79
  7. Explicit higher-order schemes for molecular dynamics problems

    Num. Meth. Prog., 22:2 (2021),  87–108
  8. Investigation of supersonic underexpanded jets exhausting into a slotted submerged space

    Prikl. Mekh. Tekh. Fiz., 61:2 (2020),  81–91
  9. Creating a coating from the titanium–aluminum intermetallic compound by the cold spray technology

    Prikl. Mekh. Tekh. Fiz., 59:6 (2018),  190–200
  10. Supersonic gas flows in radial nozzles

    Prikl. Mekh. Tekh. Fiz., 58:6 (2017),  78–90
  11. Numerical simulation of titanium dissolution in the aluminum melt and synthesis of an intermetallic compound

    Prikl. Mekh. Tekh. Fiz., 58:5 (2017),  158–166
  12. On the mechanism of self-oscillations of a supersonic radial jet exhausting into an ambient space

    Prikl. Mekh. Tekh. Fiz., 57:2 (2016),  53–63
  13. Mechanism of self-oscillations in a supersonic jet impact onto an obstacle. 2. Obstacle with no spike

    Prikl. Mekh. Tekh. Fiz., 55:5 (2014),  21–28
  14. Mechanism of self-oscillations in a supersonic jet impact onto an obstacle. 1. Obstacle with a spike

    Prikl. Mekh. Tekh. Fiz., 55:4 (2014),  50–59
  15. Method of molecular dynamics in mechanics of deformable solids

    Prikl. Mekh. Tekh. Fiz., 55:3 (2014),  113–139
  16. Numerical and experimental simulation of wave formation during explosion welding

    Trudy Mat. Inst. Steklova, 281 (2013),  16–31
  17. Numerical and experimental modeling of jet formation during a high-velocity oblique impact of metal plates

    Fizika Goreniya i Vzryva, 48:2 (2012),  100–112
  18. Numerical simulation of wave formation in an oblique impact of plates by the method of molecular dynamics

    Prikl. Mekh. Tekh. Fiz., 53:6 (2012),  121–133
  19. Effect of gas flow swirling on coating deposition by the cold gas-dynamic spray method

    Prikl. Mekh. Tekh. Fiz., 53:2 (2012),  72–83
  20. Effect of the metal structure on the loss of stability of a thin plate separating a powder compressed by a shock wave

    Fizika Goreniya i Vzryva, 46:1 (2010),  109–116
  21. Compaction of a mixture of copper and molybdenum nanopowders modeled by the molecular dynamics method

    Prikl. Mekh. Tekh. Fiz., 49:5 (2008),  11–23
  22. Compaction of copper nanopowder

    Prikl. Mekh. Tekh. Fiz., 48:3 (2007),  133–141
  23. Dislocation structure of shear bands in single crystals

    Prikl. Mekh. Tekh. Fiz., 47:6 (2006),  102–113
  24. Effect of wave formation during shock-wave compaction of powders

    Prikl. Mekh. Tekh. Fiz., 47:1 (2006),  119–130
  25. Large-scale streamwise vortices in the supersonic part of a permeable nozzle

    Prikl. Mekh. Tekh. Fiz., 46:5 (2005),  68–75
  26. Calculation of the field of internal stresses for a plane-strained state of an elastic body with dislocations

    Prikl. Mekh. Tekh. Fiz., 45:6 (2004),  116–123
  27. Internal stresses in a solid with dislocations

    Prikl. Mekh. Tekh. Fiz., 45:4 (2004),  131–136
  28. Model of elastoplastic deformation of materials, based on the gauge theory of defects with allowance for energy dissipation

    Prikl. Mekh. Tekh. Fiz., 45:2 (2004),  177–187
  29. Lifting of dust particles behind a reflected shock wave sliding above a particle layer

    Prikl. Mekh. Tekh. Fiz., 42:5 (2001),  8–15
  30. Mechanism of superdeep penetration of particles into a metal target

    Prikl. Mekh. Tekh. Fiz., 41:2 (2000),  37–46
  31. Appearance of a “cold” layer upon explosive compacting of powders

    Prikl. Mekh. Tekh. Fiz., 41:1 (2000),  192–197
  32. Mathematical model of a heterogeneous medium consisting of a matrix and spherical inclusions

    Prikl. Mekh. Tekh. Fiz., 40:4 (1999),  170–178
  33. Structure of compression shock waves in porous elastoplastic materials

    Prikl. Mekh. Tekh. Fiz., 39:6 (1998),  27–32
  34. Criterion of formation of a shock wave reflected from a cloud of particles

    Prikl. Mekh. Tekh. Fiz., 39:3 (1998),  44–51
  35. Interaction of a shock wave with a cloud of particles

    Fizika Goreniya i Vzryva, 32:2 (1996),  86–99
  36. Interaction of a shock wave with a cloud of particles with disturbed boundaries

    Prikl. Mekh. Tekh. Fiz., 37:4 (1996),  36–39
  37. Rarefaction shock wave in a porous material

    Prikl. Mekh. Tekh. Fiz., 37:1 (1996),  28–35
  38. Rarefaction shock wave in the porous materials

    Dokl. Akad. Nauk, 341:5 (1995),  630–631
  39. On some features of gas flow under the interaction of a shock wave with a cloud of particles

    Dokl. Akad. Nauk, 340:2 (1995),  188–190
  40. On propagation of a shock wave in a porous material upon collision of plates

    Fizika Goreniya i Vzryva, 31:4 (1995),  79–83
  41. Ignition of pulverized coal particles in shock waves

    Prikl. Mekh. Tekh. Fiz., 36:3 (1995),  31–37
  42. Some features of the flow of gas that occurs as a result of the interaction between a shock-wave and a cloud of particles

    Prikl. Mekh. Tekh. Fiz., 36:2 (1995),  8–18
  43. Shock wave interaction with the particles cloud

    Dokl. Akad. Nauk, 334:3 (1994),  310–313
  44. Interaction of a shock wave with a cloud of particles of finite dimensions

    Prikl. Mekh. Tekh. Fiz., 35:2 (1994),  26–37
  45. Model of a porous material considering the plastic zone near the pore

    Prikl. Mekh. Tekh. Fiz., 34:6 (1993),  125–133
  46. Dynamic damage and fracture of a plate with the expansion of a gas cavity in water

    Prikl. Mekh. Tekh. Fiz., 32:5 (1991),  154–158
  47. Dynamic ductility peak with high-velocity failure of metal shells

    Prikl. Mekh. Tekh. Fiz., 32:2 (1991),  122–127
  48. Numerical modelling of the recoil of a porous cylinder from a rigid obstacle

    Prikl. Mekh. Tekh. Fiz., 31:3 (1990),  100–104
  49. Study of the dispersal of a shell with allowance for fracture and the escape of detonation products between fragments

    Prikl. Mekh. Tekh. Fiz., 30:4 (1989),  33–39
  50. Caustics in a two-phase gas-particle medium

    Prikl. Mekh. Tekh. Fiz., 28:4 (1987),  164–170
  51. Continuum-discrete model of a mixture of gas and solid particles for small concentration of particles

    Prikl. Mekh. Tekh. Fiz., 27:2 (1986),  93–101
  52. Boiling model for a fluidized bed of particles

    Prikl. Mekh. Tekh. Fiz., 25:3 (1984),  89–94
  53. Relations at a combined concentration discontinuity in a gas containing solid particles

    Prikl. Mekh. Tekh. Fiz., 25:2 (1984),  112–119

  54. Sergei Konstantinovich Godunov has turned 85 years old

    Uspekhi Mat. Nauk, 70:3(423) (2015),  183–207


© Steklov Math. Inst. of RAS, 2026