|
|
Publications in Math-Net.Ru
-
Linearized Oskolkov system of non-zero order in the Avalos–Triggiani problem
J. Comp. Eng. Math., 12:1 (2025), 36–43
-
The linearized Oskolkov system in the Avalos–Triggiani problem
J. Comp. Eng. Math., 11:1 (2024), 17–23
-
Analysis of the Avalos–Triggiani problem for the linear Oskolkov system of the highest order and a system of wave equations
Vestnik YuUrGU. Ser. Mat. Model. Progr., 17:2 (2024), 104–110
-
The linear Oskolkov system of non-zero order in the Avalos–Triggiani problem
J. Comp. Eng. Math., 10:3 (2023), 17–23
-
An analysis of the Avalos–Triggiani problem for the linear Oskolkov system of non-zero order and a system of wave equations
Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:4 (2023), 93–98
-
A non-stationary model of the incompressible viscoelastic Kelvin–Voigt fluid of non-zero order in the magnetic field of the Earth
Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:3 (2019), 42–51
-
Phase space of the initial-boundary value problem for the Oskolkov system of highest order
Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018), 67–77
-
Computational experiment for a class of mathematical models of magnetohydrodynamics
Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:1 (2017), 149–155
-
Numerical study of a flow of viscoelastic fluid of Kelvin–Voigt having zero order in a magnetic field
J. Comp. Eng. Math., 3:2 (2016), 40–47
-
Generalized model of incompressible viscoelastic fluid in the Earth's magnetic field
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:3 (2016), 13–21
-
Phase space of the initial-boundary value problem for the Oskolkov system of nonzero order
Zh. Vychisl. Mat. Mat. Fiz., 55:5 (2015), 823–829
-
On a class of Sobolev-type equations
Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:4 (2014), 5–21
-
Tamara Gennad'evna Sukacheva. To the 60th anniversary
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:3 (2016), 86–87
© , 2026