RUS  ENG
Full version
PEOPLE

Popova Tat'yana Semenovna

Publications in Math-Net.Ru

  1. Mathematical modeling of T-joint connection of thin anisotropic inclusions in an elastic body with debonding

    Prikl. Mekh. Tekh. Fiz., 66:3 (2025),  192–207
  2. The problem on T-shape junction of thin inclusions

    Sib. Èlektron. Mat. Izv., 21:2 (2024),  1578–1593
  3. Numerical solution of the problem of T-shaped junction of two thin Timoshenko inclusions in a two-dimentional elastic body

    Mathematical notes of NEFU, 31:3 (2024),  95–122
  4. The problem of T-shaped junction of two thin Timoshenko inclusions in a two-dimensional elastic body

    Mathematical notes of NEFU, 30:2 (2023),  40–55
  5. Numerical solution of the equilibrium problem for a two-dimensional elastic body with a thin semirigid inclusion

    Mathematical notes of NEFU, 28:1 (2021),  51–66
  6. On equilibrium of a two-dimensional viscoelastic body with a thin Timoshenko inclusion

    Sib. Èlektron. Mat. Izv., 17 (2020),  1463–1477
  7. The junction problem for two weakly curved inclusions in an elastic body

    Sibirsk. Mat. Zh., 61:4 (2020),  932–945
  8. Problems on thin inclusions in a two-dimensional viscoelastic body

    Sib. Zh. Ind. Mat., 21:2 (2018),  66–78
  9. Optimal control of the length of a straight crack for a model describing an equilibrium of a two-dimensional body with two intersecting cracks

    Mathematical notes of NEFU, 25:3 (2018),  43–53
  10. On junction problem for elastic Timoshenko inclusion and semi-rigid inclusion

    Mathematical notes of NEFU, 25:1 (2018),  73–89
  11. On crack propagations in elastic bodies with thin inclusions

    Sib. Èlektron. Mat. Izv., 14 (2017),  586–599
  12. A contact problem for a viscoelastic plate and an elastic beam

    Sib. Zh. Ind. Mat., 19:3 (2016),  41–54
  13. On the hierarchy of thin delaminated inclusions in elastic bodies

    Mathematical notes of NEFU, 23:1 (2016),  87–107
  14. Variational Equilibrium Problem for a Plate with a Vertical Crack with a Geometrically Nonlinear Nonpenetration Condition

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:2 (2011),  77–88


© Steklov Math. Inst. of RAS, 2026