RUS  ENG
Full version
PEOPLE

Vasil'ev Anatolii Aleksandrovich

Publications in Math-Net.Ru

  1. Explosive aspects of nitrogen oxides

    Fizika Goreniya i Vzryva, 61:5 (2025),  101–110
  2. Ammonia/oxygen – a flammable mixture without carbon footprint

    Fizika Goreniya i Vzryva, 61:4 (2025),  3–17
  3. Suppression of detonation waves by nitrogen and carbon dioxide: methane and hydrogen mixtures

    Fizika Goreniya i Vzryva, 61:2 (2025),  18–24
  4. Effect of species concentrations on the characteristics of combustion and detonation of methane-hydrogen-oxygen-nitrogen mixtures

    Fizika Goreniya i Vzryva, 61:1 (2025),  3–12
  5. Parameters of detonation of hydrogen-air mixtures with partly dissociated components

    Fizika Goreniya i Vzryva, 60:5 (2024),  30–39
  6. Basic parameters of detonation of hydrogen mixtures. Part II

    Fizika Goreniya i Vzryva, 60:3 (2024),  91–103
  7. Basic parameters of detonation of hydrogen mixtures. Part I

    Fizika Goreniya i Vzryva, 60:3 (2024),  76–90
  8. Excitation of cylindrical detonation by a decaying shock wave

    Fizika Goreniya i Vzryva, 59:6 (2023),  123–135
  9. Initiation of twoand three-fuel combustible systems based on methane, coal dust, and hydrogen

    Fizika Goreniya i Vzryva, 59:3 (2023),  44–60
  10. Detonation as combustion in a supersonic flow of a combustible mixture

    Fizika Goreniya i Vzryva, 58:6 (2022),  75–88
  11. Investigation of combustion of a coal-methane-air suspension in a long closed channel

    Fizika Goreniya i Vzryva, 58:5 (2022),  54–63
  12. Resonance of oscillations in reaction products and initial mixture as a reason for the deflagration-to-detonation transition

    Fizika Goreniya i Vzryva, 58:3 (2022),  71–79
  13. Equation of state of gas detonation products. Allowance for the formation of the condensed phase of carbon

    Fizika Goreniya i Vzryva, 57:5 (2021),  74–85
  14. Multifuel systems: methane–hydrogen–water vapor

    Fizika Goreniya i Vzryva, 57:1 (2021),  17–26
  15. Hydrocarbon fuels: gas-dynamic and energy parameters of detonation

    Fizika Goreniya i Vzryva, 56:6 (2020),  40–55
  16. Evaluation of conditions for suppression of combustion and detonation waves

    Fizika Goreniya i Vzryva, 56:5 (2020),  39–44
  17. Practical issues of safety in coal mines

    Fizika Goreniya i Vzryva, 55:4 (2019),  138–145
  18. Is it possible to determine normal combustion parameters from the detonation theory?

    Fizika Goreniya i Vzryva, 55:4 (2019),  3–14
  19. Investigation of gas detonation in over-rich mixtures of hydrocarbons with oxygen

    Fizika Goreniya i Vzryva, 54:2 (2018),  89–97
  20. Energy release in multifront detonation

    Fizika Goreniya i Vzryva, 53:6 (2017),  103–109
  21. What is burning in coal mines: methane or coal dust?

    Fizika Goreniya i Vzryva, 53:1 (2017),  11–18
  22. Stability of a cylindrical flame front in an annular combustion chamber

    Sib. Zh. Ind. Mat., 20:4 (2017),  67–79
  23. Initiation of multifuel mixtures with bifurcation structures

    Fizika Goreniya i Vzryva, 52:6 (2016),  3–12
  24. Some aspects of recording and interpretation of rotating detonation waves

    Fizika Goreniya i Vzryva, 51:6 (2015),  96–103
  25. Cellular structures of a multifront detonation wave and initiation (Review)

    Fizika Goreniya i Vzryva, 51:1 (2015),  9–30
  26. On a high-velocity annular impactor

    Fizika Goreniya i Vzryva, 50:4 (2014),  136–139
  27. Monofuel as a source of bifurcation properties of multifuel systems

    Fizika Goreniya i Vzryva, 50:2 (2014),  14–23
  28. Characteristics of combustion and detonation of methane–coal mixtures

    Fizika Goreniya i Vzryva, 49:4 (2013),  48–59
  29. Explosion Hazard of Methane-Hydrates

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:2 (2013),  21–27
  30. Optimization of the deflagration-to-detonation transition

    Fizika Goreniya i Vzryva, 48:3 (2012),  25–34
  31. The wave of phase transition water-ice as “burning” wave

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:4 (2012),  16–20
  32. Assessment of the flame velocity as a function of pressure and temperature

    Fizika Goreniya i Vzryva, 47:5 (2011),  13–17
  33. Bifurcation structures in gas detonation

    Fizika Goreniya i Vzryva, 46:2 (2010),  88–100
  34. Detonation properties of saturated hydrocarbons

    Fizika Goreniya i Vzryva, 45:6 (2009),  82–90
  35. Reliability of kinetic data used for estimating multifront detonation parameters

    Fizika Goreniya i Vzryva, 45:3 (2009),  89–94
  36. Formation of carbon clusters in deflagration and detonation waves in gas mixtures

    Fizika Goreniya i Vzryva, 44:3 (2008),  81–94
  37. Energy aspects of initiation of domestic gases

    Fizika Goreniya i Vzryva, 44:1 (2008),  96–101
  38. Detonation properties of the synthesis gas

    Fizika Goreniya i Vzryva, 43:6 (2007),  90–96
  39. Ignition delay in multifuel mixtures

    Fizika Goreniya i Vzryva, 43:3 (2007),  42–46
  40. Laminar-turbulent transition in the boundary layer on cones in a hypersonic flow at high Reynolds numbers per meter

    Prikl. Mekh. Tekh. Fiz., 48:3 (2007),  76–83
  41. Nonclassical regimes of wave diffraction in combustible mixtures

    Fizika Goreniya i Vzryva, 42:6 (2006),  137–143
  42. Detonation waves in a reactive supersonic flow

    Fizika Goreniya i Vzryva, 42:5 (2006),  85–100
  43. Estimation of critical conditions for the detonation-to-deflagration transition

    Fizika Goreniya i Vzryva, 42:2 (2006),  91–96
  44. Gas detonation and its application in engineering and technologies (review)

    Fizika Goreniya i Vzryva, 39:4 (2003),  22–54
  45. Experimental investigation and numerical simulation of an expanding multifront detonation wave

    Fizika Goreniya i Vzryva, 39:1 (2003),  92–103
  46. Initiation of a porous explosive by overdriven gas detonation products

    Fizika Goreniya i Vzryva, 37:5 (2001),  90–97
  47. Информация о 3-м Международном симпозиуме

    Fizika Goreniya i Vzryva, 37:1 (2001),  141–146
  48. Estimation of the combustion and detonation parameters for hydrocarbon gas hydrates

    Fizika Goreniya i Vzryva, 36:6 (2000),  119–125
  49. Combustion and detonation characteristics of hydrazine and its methyl derivatives

    Fizika Goreniya i Vzryva, 36:3 (2000),  81–96
  50. Characteristic regimes of multifront-detonation propagation along a convex surface

    Fizika Goreniya i Vzryva, 35:5 (1999),  86–92
  51. Diffraction estimate of the critical energy for initiation of gaseous detonation

    Fizika Goreniya i Vzryva, 34:4 (1998),  72–76
  52. Dynamics of a single bubble with a chemically active gas

    Fizika Goreniya i Vzryva, 34:2 (1998),  121–124
  53. Critical conditions for initiation of cylindrical multifront detonation

    Fizika Goreniya i Vzryva, 34:2 (1998),  114–120
  54. Effect of nitrogen on multifront detonation parameters

    Fizika Goreniya i Vzryva, 34:1 (1998),  79–83
  55. Detonation combustion of gas mixtures using a hypervelocity projectile

    Fizika Goreniya i Vzryva, 33:5 (1997),  85–102
  56. The high-velocity initiation of explosive gaseous mixtures

    Dokl. Akad. Nauk, 338:2 (1994),  188–190
  57. Explosive combustion of a gas mixture in radial annular chambers

    Fizika Goreniya i Vzryva, 30:4 (1994),  111–119
  58. Near-limiting detonation in channels with porous walls

    Fizika Goreniya i Vzryva, 30:1 (1994),  101–106
  59. Plane initiation of a detonation

    Fizika Goreniya i Vzryva, 29:3 (1993),  164–170
  60. Estimating the burning rate of an explosive gas mixture at elevated pressures and temperatures

    Fizika Goreniya i Vzryva, 28:4 (1992),  44–48
  61. Multiple-site ignition of a gas mixture and its effects on the transition from burning to detonation

    Fizika Goreniya i Vzryva, 28:3 (1992),  65–69
  62. Spatial excitation of a multifront detonation

    Fizika Goreniya i Vzryva, 25:1 (1989),  113–119
  63. Initiation of a gas detonation with a spatial source distribution

    Fizika Goreniya i Vzryva, 24:2 (1988),  118–124
  64. Diffraction of multifront detonation

    Fizika Goreniya i Vzryva, 24:1 (1988),  99–107
  65. Detonation waves in gases

    Fizika Goreniya i Vzryva, 23:5 (1987),  109–131
  66. Near-limiting regimes of gaseous detonation

    Fizika Goreniya i Vzryva, 23:3 (1987),  121–126
  67. Detonation of gas jets

    Fizika Goreniya i Vzryva, 22:4 (1986),  82–88
  68. Gas detonation propagation with simultaneous change in tube section and mixture composition

    Fizika Goreniya i Vzryva, 21:2 (1985),  142–147
  69. Critical initiation of a gas detonation

    Fizika Goreniya i Vzryva, 19:1 (1983),  121–131
  70. Critical diameter of gas-mixture detonation

    Fizika Goreniya i Vzryva, 18:3 (1982),  98–104
  71. Geometric limits of gas detonation propagation

    Fizika Goreniya i Vzryva, 18:2 (1982),  132–136
  72. Critical conditions for gas detonation in sharply expanding channels

    Fizika Goreniya i Vzryva, 16:5 (1980),  117–125
  73. Effects of initial temperature on gas-detonation parameters

    Fizika Goreniya i Vzryva, 15:6 (1979),  149–152
  74. Critical energy of initiation of a multifront detonation

    Fizika Goreniya i Vzryva, 15:6 (1979),  94–104
  75. Extension of the chemical peak in a multifront detonation

    Fizika Goreniya i Vzryva, 14:4 (1978),  138–140
  76. Estimate of the energy to initiated a cylindrical detonation

    Fizika Goreniya i Vzryva, 14:3 (1978),  154–155
  77. Analysis of the cell parameters of a multifront gas detonation

    Fizika Goreniya i Vzryva, 13:3 (1977),  404–408
  78. Model of the nucleus of a multifront gas detonation

    Fizika Goreniya i Vzryva, 12:5 (1976),  744–754
  79. Compression waves behind a detonation front

    Fizika Goreniya i Vzryva, 11:3 (1975),  515–517
  80. Pressure in the detonation front in gases

    Fizika Goreniya i Vzryva, 9:5 (1973),  710–716
  81. Chapman–Jouguet condition for real detonation waves

    Fizika Goreniya i Vzryva, 9:2 (1973),  309–315
  82. Compression-wave train behind a detonation front

    Fizika Goreniya i Vzryva, 9:1 (1973),  144–145
  83. Location of the sonic transition behind a detonation front

    Fizika Goreniya i Vzryva, 8:1 (1972),  98–104


© Steklov Math. Inst. of RAS, 2026