RUS  ENG
Full version
PEOPLE

Girgel Sergei Sergeevich

Publications in Math-Net.Ru

  1. Decentered circular Kummer – Gauss beams of various types

    PFMT, 2025, no. 4(65),  14–19
  2. Vector rotating Gaussian Arnaud beams with complex astigmatism

    PFMT, 2025, no. 3(64),  43–48
  3. Arnaud’s rotating scalar Gaussian beams with complex astigmatism

    PFMT, 2025, no. 2(63),  22–26
  4. Energy and polarization properties of vector Gaussian light beams with complex astigmatism

    PFMT, 2025, no. 1(62),  14–19
  5. Energy and polarisation properties of vector Gaussian light beams with simple astigmatism

    PFMT, 2024, no. 4(61),  19–24
  6. Polarization and energy properties of the cartesian TM-modes of Kummer–Gauss beams

    PFMT, 2024, no. 2(59),  22–26
  7. Tm modes of vector Cartesian Kummer beams with transferable limited power

    PFMT, 2024, no. 1(58),  16–21
  8. Polarization and energy fluxes of generalized astigmatic TM Hermite–Gaussian modes

    PFMT, 2023, no. 4(57),  14–19
  9. Vector circular paraxial Kummer–Gauss beams. Polarization and power properties

    PFMT, 2023, no. 3(56),  7–11
  10. Polarizing properties and crossflows of energy of vector Bessel – Gauss TM light beams

    PFMT, 2023, no. 2(55),  15–19
  11. Energy properties of the vector circular Kummer beams with terminating power. II. The nonhomogeneous polarization

    PFMT, 2023, no. 1(54),  20–24
  12. Energy properties of the vector circular Kummer beams with terminating power. I. The homogeneous polarization

    PFMT, 2022, no. 4(53),  16–20
  13. Energy performances of the vector cartesian Kummer beams with transferable terminating power

    PFMT, 2022, no. 3(52),  13–17
  14. Kummer 3D light beams without the Gaussian apodization with transferable terminating power

    PFMT, 2022, no. 2(51),  18–21
  15. Shifted Bessel fields with various azimuthal dependences

    PFMT, 2022, no. 1(50),  14–18
  16. Solutions of the wave equation in parabolic rotary coordinates. III. Spatiotemporal wave packets of Kummer–Kummer and Tricomi–Kummer with the continuous angular index

    PFMT, 2021, no. 1(46),  13–18
  17. Solutions of the wave equation in parabolic rotary coordinates. II. 3D Tricomi–Kummer light beams and other beams with the continuous angular index

    PFMT, 2020, no. 4(45),  20–24
  18. Solutions of the wave equation in parabolic rotary coordinates. I. 3D Kummer–Kummer light beams with the continuous angular index

    PFMT, 2020, no. 3(44),  13–17
  19. Circular $3D$ Kummer–Gauss beams with the continuous angular index

    PFMT, 2019, no. 1(38),  16–20
  20. Optical Weber–Gauss beams

    PFMT, 2018, no. 4(37),  13–17
  21. Polarizing and power properties of vectorial gaussian–like beams. II. Non-homogeneous polarization

    PFMT, 2017, no. 4(33),  7–10
  22. Power properties of vector vortex beams of Laplace–Gauss

    PFMT, 2017, no. 3(32),  13–17
  23. Generalized asymmetric of Bessel–Gaussian beams of the continuous order

    PFMT, 2017, no. 2(31),  10–14
  24. Diffraction free asymmetric Bessel wave fields of the continuous order

    PFMT, 2017, no. 1(30),  13–16
  25. Polarizing and power properties of vector Gaussian-like beams. I. The homogeneous polarisation

    PFMT, 2016, no. 1(26),  17–21
  26. Generalized Bessel–Gaussian beams of continuous order

    PFMT, 2015, no. 4(25),  11–15
  27. Beams of Kummer without the Gaussian apodization with transferable terminating power

    PFMT, 2015, no. 3(24),  7–9
  28. Kummer–Gaussian scalar astigmatic three-dimensional light beams

    PFMT, 2013, no. 1(14),  19–23
  29. Polarizable and energy properties of the vector paraxial gaussian light beams

    PFMT, 2012, no. 3(12),  19–24
  30. Properties of vectorial paraxial light beams. II. The non homogeneous polarization

    PFMT, 2012, no. 1(10),  11–14
  31. Physical properties of scalar 2D beams of Kummer – Gauss

    PFMT, 2011, no. 4(9),  19–23
  32. Properties of vectorial paraxial light beams. I. Homogeneous polarization

    PFMT, 2011, no. 1(6),  20–24
  33. Scalar paraxial two-dimensional Gaussian-like light beams

    PFMT, 2010, no. 1(2),  7–11


© Steklov Math. Inst. of RAS, 2026