RUS  ENG
Full version
PEOPLE

Sytschev Alexandr Evgen'evich

Publications in Math-Net.Ru

  1. Aluminothermic synthesis of MnSi and MnSi$_{1.73}$: thermoelectric and magnetic properties

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 52:2 (2026),  24–28
  2. Special features of Al$_9$Mn$_3$Si $\gamma$-phase formation during high-temperature synthesis in Al–Mn–Si : combustion, structurization, and phase formation

    Fizika Goreniya i Vzryva, 61:1 (2025),  36–43
  3. Магнитные и термоэлектрические свойства сплавов на основе системы $\rm Fe$$\rm Al$$\rm Mn$, полученных методом самораспространяющегося высокотемпературного синтеза

    TVT, 63:5 (2025),  604–613
  4. Self-propagiating high-temperature synthesis in $\mathrm{Ti}$$\mathrm{Al}$$\mathrm{Mn}$

    Fizika Goreniya i Vzryva, 59:1 (2023),  85–91
  5. On the plasma-chemical processing of finely dispersed silicon monoxide particles in argon-hydrogen plasma flows

    TVT, 60:3 (2022),  339–342
  6. Synthesis of a $\mathrm{Ni}$$\mathrm{Al}$$\mathrm{C}$ composite with multilayer carbon nanostructures by an electrothermal explosion under pressure

    Fizika Goreniya i Vzryva, 57:2 (2021),  75–81
  7. Self-propaging high-temperature synthesis of mechanically activated mixtures in $\mathrm{Co}$$\mathrm{Ti}$$\mathrm{Al}$

    Fizika Goreniya i Vzryva, 57:1 (2021),  58–64
  8. Effect of $\mathrm{SiO}_2$ content and mechanical activation on $\mathrm{Ni}$$\mathrm{Al}$$\mathrm{SiO}_2$ combustion

    Fizika Goreniya i Vzryva, 56:5 (2020),  32–38
  9. Thermal explosion in a $2\mathrm{Co}$$\mathrm{Ti}$$\mathrm{Al}$ system: combustion, phase formation, and properties

    Fizika Goreniya i Vzryva, 56:3 (2020),  78–85
  10. The use of gas extrusion for the synthesis of a high-strength composite based on a 5xxx series aluminum alloy strengthened with carbon nanostructures

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:5 (2020),  7–10
  11. Effect of coal content and mechanical activation on the combustion of a $\mathrm{Ni}$$\mathrm{Al}$$\mathrm{C}$ system

    Fizika Goreniya i Vzryva, 55:6 (2019),  58–64
  12. Effect of a NiO additive on the interaction in a Ni–Al–W system in self-propagating high-temperature synthesis

    Fizika Goreniya i Vzryva, 54:4 (2018),  55–63
  13. Electrically conducting ceramics based on $\rm Al$$\rm AlN$$\rm TiB_2$

    TVT, 56:4 (2018),  543–547
  14. Structure and properties of the composite material obtained by thermal explosion of a mixture of $\mathrm{Ni}+\mathrm{Al}+\mathrm{Cr}_2\mathrm{O}_3$

    Fizika Goreniya i Vzryva, 53:1 (2017),  48–56
  15. Synthesis of a new MAX phase in the Ti–Zr–Al–C system

    Mendeleev Commun., 27:1 (2017),  59–60
  16. Structure and phase formation in the Ti–Al–Nb system in the thermal explosion mode

    Fizika Goreniya i Vzryva, 52:6 (2016),  44–50
  17. Self-propagating high-temperature synthesis of porous Ti–Si–Al–C based materials

    Fizika Goreniya i Vzryva, 42:2 (2006),  53–60
  18. Self-propagating high-temperature synthesis of nanomaterials

    Usp. Khim., 73:2 (2004),  157–170
  19. Combustion-front microstructure in heterogeneous gasless media (using as an example the 5Ti + 3Si system)

    Fizika Goreniya i Vzryva, 32:6 (1996),  68–81
  20. Outgassing macrokinetcs in SPS

    Fizika Goreniya i Vzryva, 22:4 (1986),  55–61


© Steklov Math. Inst. of RAS, 2026