RUS  ENG
Full version
PEOPLE

Emel'yanov Konstantin Vasil'evich

Publications in Math-Net.Ru

  1. On a first-order accurate difference scheme for a singularly perturbed problem with a turning point

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013),  120–135
  2. Difference fitting scheme for a singularly perturbed problem with turning point

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:2 (2012),  80–91
  3. Exponentially fitted scheme for a singularly perturbed problem

    Zh. Vychisl. Mat. Mat. Fiz., 45:4 (2005),  669–676
  4. On an approximate solution of a one-dimensional linear singularly perturbed problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 9:2 (2003),  55–63
  5. Asymptotic solution of a perturbed problem of shock-free compression of a plane gas layer

    Zh. Vychisl. Mat. Mat. Fiz., 39:9 (1999),  1571–1580
  6. Application of one-dimensional optimal grids to two-dimensional singularly perturbed problems

    Zh. Vychisl. Mat. Mat. Fiz., 38:3 (1998),  425–432
  7. Applying optimal difference grids to problems with singular perturbations

    Zh. Vychisl. Mat. Mat. Fiz., 34:6 (1994),  936–943
  8. A difference scheme for a singularly perturbed boundary value problem with strong quadratic nonlinearity

    Dokl. Akad. Nauk SSSR, 286:2 (1986),  269–272
  9. A truncated difference scheme for a linear singularly perturbed boundary-value problem

    Dokl. Akad. Nauk SSSR, 262:5 (1982),  1052–1055
  10. A difference scheme for an ordinary differential equation with a small parameter

    Zh. Vychisl. Mat. Mat. Fiz., 18:5 (1978),  1146–1153
  11. The difference method of solving the third boundary value problem for a differential equation with a small parameter multiplying the highest derivative

    Zh. Vychisl. Mat. Mat. Fiz., 15:6 (1975),  1457–1465
  12. Number of arithmetical operations necessary for the approximate solution of Fredholm integral equations of the second kind

    Zh. Vychisl. Mat. Mat. Fiz., 7:4 (1967),  905–910


© Steklov Math. Inst. of RAS, 2026