RUS  ENG
Full version
PEOPLE

Tuchin Valerii Viktorovich

Publications in Math-Net.Ru

  1. Differences in the kinetics of optical clearing of healthy and diabetic head tissues

    Izv. Sarat. Univ. Physics, 25:2 (2025),  201–210
  2. Иммерсионное просветление кожи с помощью водного раствора мочевины: данные оптической когерентной томографии и молекулярное моделирование

    Optics and Spectroscopy, 133:12 (2025),  1271–1282
  3. Measurement of the refractive index of biological tissues of the head using OCT and a multi-wavelength refractometer

    Optics and Spectroscopy, 133:5 (2025),  575–584
  4. Optical clearing of human skin in vivo using aqueous solutions of sorbitol, xylitol, xylose, and DMSO

    Optics and Spectroscopy, 133:5 (2025),  560–574
  5. Structural changes in the skin and muscle tissue of rats with a model of diabetes

    Optics and Spectroscopy, 133:5 (2025),  511–515
  6. Path ways to increase reconstruction accuracy and depth sensitivity in mesoscopic fluorescence molecular tomography

    Optics and Spectroscopy, 133:5 (2025),  488–499
  7. Modelling the effect of osmotic pressure on cancer cell growth: The role of area size and duration of exposure

    Izv. Sarat. Univ. Physics, 24:4 (2024),  374–383
  8. Influence of strain differences on resistance of Staphylococcus aureus to photodynamic action usingmeso-substituted cationic porphyrins

    Izv. Sarat. Univ. Physics, 24:3 (2024),  216–227
  9. Kinetics of glycerol-induced molecular diffusion in the normal and cancerous ovarian tissues

    Izv. Sarat. Univ. Physics, 24:2 (2024),  161–170
  10. Molecular modeling and OCT monitoring of optical clearing of human skin

    Zhurnal Tekhnicheskoi Fiziki, 94:3 (2024),  515–524
  11. Human soft tissue phantom for terahertz imaging and spectroscopy

    Optics and Spectroscopy, 132:3 (2024),  320–327
  12. Monte Carlo modeling of temporal point spread functions and sensitivity functions for mesoscopic time-resolved fluorescence molecular tomography

    Computer Optics, 47:5 (2023),  673–690
  13. Ex vivo study of the kinetics of ovarian tissue optical properties under the influence of 40$\%$-glucose

    Izv. Sarat. Univ. Physics, 23:2 (2023),  120–127
  14. Influence of immersion agents on optical parameters of bio-tissues during laser photothermal therapy of tumor: pilot study

    Optics and Spectroscopy, 130:6 (2022),  861–871
  15. Study of adsorption of the SARS-CoV-2 virus spike protein by vibrational spectroscopy using terahertz metamaterials (Kvantovaya Elektronika, 52:1 (2022), 2–12)

    Kvantovaya Elektronika, 52:3 (2022),  288
  16. Study of adsorption of the SARS-CoV-2 virus spike protein by vibrational spectroscopy using terahertz metamaterials

    Kvantovaya Elektronika, 52:1 (2022),  2–12
  17. Impact of osmotic pressure on cancer cells in a three-dimensional cellular lattice and cell spheroid

    Izvestiya VUZ. Applied Nonlinear Dynamics, 29:4 (2021),  559–570
  18. Study of the photocatalytic antimicrobial activity of nanocomposites based on TiO$_{2}$–Al$_{2}$O$_{3}$ under the action of LED radiation (405 nm) on staphylococci

    Optics and Spectroscopy, 129:6 (2021),  736–740
  19. Optical clearing of biological tissues with a number of disaccharides

    Optics and Spectroscopy, 129:6 (2021),  677–683
  20. Prospects for multimodal imaging of biological tissues using fluorescence imaging

    Kvantovaya Elektronika, 51:2 (2021),  104–117
  21. Interaction of laser radiation and complexes of gold nanoparticles linked with proteins

    Kvantovaya Elektronika, 51:1 (2021),  52–63
  22. Measurement of optical properties of human gums and dentin in the spectral range from 350 to 800 nm

    Izv. Sarat. Univ. Physics, 20:4 (2020),  258–267
  23. Trapping of magnetic nanoparticles in the blood stream under the influence of a magnetic field

    Izv. Sarat. Univ. Physics, 20:1 (2020),  72–79
  24. Optical properties of hyperosmotic agents for immersion clearing of tissues in terahertz spectroscopy

    Optics and Spectroscopy, 128:7 (2020),  1020–1029
  25. Study of blood serum in rats with transplanted cholangiocarcinoma using Raman spectroscopy

    Optics and Spectroscopy, 128:7 (2020),  956–963
  26. Effects of terahertz radiation on living cells: a review

    Optics and Spectroscopy, 128:6 (2020),  852–864
  27. Efficiency of plasmonic photothermal therapy of experimental tumors

    Optics and Spectroscopy, 128:6 (2020),  846–851
  28. Photothermal effect of infrared (808 nm) laser radiation and gold nanoparticles in different modifications on s. aureus

    Optics and Spectroscopy, 128:6 (2020),  840–845
  29. Diagnosis of diabetes based on analysis of exhaled air by terahertz spectroscopy and machine learning

    Optics and Spectroscopy, 128:6 (2020),  805–810
  30. Cellular uptake study of antimycotic-loaded carriers using imaging flow cytometry and confocal laser scanning microscopy

    Optics and Spectroscopy, 128:6 (2020),  795–804
  31. Determination of the diffusion coefficient of 40%-glucose in human gum tissue by optical method

    Optics and Spectroscopy, 128:6 (2020),  760–765
  32. The effectiveness of glycerol solutions for optical clearing of the intact skin as measured by confocal Raman microspectroscopy

    Optics and Spectroscopy, 128:6 (2020),  753–759
  33. Control of the optical properties of gum and dentin tissue of a human tooth at laser spectral lines in the range of 200–800 nm

    Kvantovaya Elektronika, 50:1 (2020),  47–54
  34. Full-field optical coherence tomograph based on MII-4 micro interferometer with air-immersion objectives

    Optics and Spectroscopy, 127:2 (2019),  347–352
  35. In vivo optical clearing of human skin under the effect of some monosaccharides

    Optics and Spectroscopy, 127:2 (2019),  329–336
  36. Determination of the diffusion coefficient of methylene blue solutions in the dentin of a human tooth using reflection spectroscopy and their antibacterial activity by laser exposure

    Optics and Spectroscopy, 126:6 (2019),  832–842
  37. A complex study of the peculiarities of blood serum absorption of rats with experimental liver cancer

    Optics and Spectroscopy, 126:6 (2019),  799–808
  38. Optical digital registration of erythrocyte sedimentation and its modeling in the form of the collective process

    Optics and Spectroscopy, 126:5 (2019),  678–689
  39. An experimentally trained noise filtration method of optical coherence tomography signals

    Optics and Spectroscopy, 126:5 (2019),  670–677
  40. Photoinduced enhancement of evans blue dye fluorescence in water solution of albumin

    Optics and Spectroscopy, 126:5 (2019),  636–641
  41. Spectral monitoring for naftifine hydrochloride immobilization into vaterite submicron particles

    Optics and Spectroscopy, 126:5 (2019),  620–626
  42. Differentiation of pigmented skin neoplasms based on digital processing of optical images

    Optics and Spectroscopy, 126:5 (2019),  584–595
  43. Effect of light scattering on biological tissue thermometry from photoluminescence spectra of up-conversion nanoparticles

    Kvantovaya Elektronika, 49:1 (2019),  59–62
  44. Measuring optical properties of human liver between 400 and 1000 nm

    Kvantovaya Elektronika, 49:1 (2019),  13–19
  45. Optical clearing as method to increase the depth of nanoparticles detection in the skin with OCT-visualization

    Izv. Sarat. Univ. Physics, 18:4 (2018),  275–284
  46. Estimation of glucose diffusion coefficient in human dura mater

    Izv. Sarat. Univ. Physics, 18:1 (2018),  32–45
  47. Effect of laser intensity and exposure time on photothermal therapy with nanoparticles heated by a 793-nm diode laser and tissue optical clearing

    Kvantovaya Elektronika, 48:6 (2018),  559–564
  48. Optical clearing of cranial bone by multicomponent immersion solutions and cerebral venous blood flow visualization

    Izv. Sarat. Univ. Physics, 17:2 (2017),  98–110
  49. Study of the epidermis ablation effect on the efficiency of optical clearing of skin in vivo

    Kvantovaya Elektronika, 47:6 (2017),  561–566
  50. Erratum: Dynamic analysis of optical cell trapping in the ray optics regime

    Computer Optics, 40:5 (2016),  759–760
  51. Investigation of Mildronat$^{\mathrm{\circledR}}$ diffusion in human eye sclera

    Izv. Sarat. Univ. Physics, 16:3 (2016),  167–177
  52. Study of ethanol impact on the transepidermal transport of indocyanine green with backscattering spectroscopy

    Izv. Sarat. Univ. Physics, 16:2 (2016),  91–96
  53. Photodynamic effect of radiation with the wavelength 405 nm on the cells of microorganisms sensitised by metalloporphyrin compounds

    Kvantovaya Elektronika, 46:6 (2016),  521–527
  54. Fractional laser microablation of skin: increasing the efficiency of transcutaneous delivery of particles

    Kvantovaya Elektronika, 46:6 (2016),  502–509
  55. Laser speckle contrast imaging of cerebral autoregulation in rats at a macro- and microcirculation level

    Kvantovaya Elektronika, 46:6 (2016),  496–501
  56. Dynamic analysis of optical cell trapping in the ray optics regime

    Computer Optics, 39:5 (2015),  694–701
  57. Morphological changes in transplanted sarcoma S45 at photodynamic therapy using nanocomposites based on gold nanorods

    Izv. Sarat. Univ. Physics, 15:4 (2015),  22–27
  58. Optical clearing of human eye sclera by aqueous 30%-glucose solution

    Izv. Sarat. Univ. Physics, 15:3 (2015),  18–24
  59. Laser Doppler anemometer signal processing for blood flow velocity measurements

    Kvantovaya Elektronika, 45:3 (2015),  275–282
  60. Optimization of phacoemulsification in different forms of the cataract in the patients with diabetes mellitus

    Izv. Sarat. Univ. Physics, 14:1 (2014),  20–24
  61. Influence of 40$\%$-glucose solution on a human corneal structure

    Izv. Sarat. Univ. Physics, 14:1 (2014),  11–19
  62. Optical properties of human colon tissues in the 350 – 2500 nm spectral range

    Kvantovaya Elektronika, 44:8 (2014),  779–784
  63. Study of diffusion of indocyanine green as a photodynamic dye into skin using backscattering spectroscopy

    Kvantovaya Elektronika, 44:7 (2014),  689–695
  64. Using gold nanorods labelled with antibodies under the photothermal action of NIR laser radiation on $\it{Staphylococcus}$ $\it{aureus}$

    Kvantovaya Elektronika, 44:7 (2014),  683–688
  65. In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents

    Kvantovaya Elektronika, 44:7 (2014),  633–640
  66. Analysis of fruit juices using a hollow core photonic crystal waveguides

    Izv. Sarat. Univ. Physics, 12:2 (2012),  58–64
  67. The study of possibility of magnetic microparticle deposit in skin at superficial application

    Izv. Sarat. Univ. Physics, 12:2 (2012),  26–30
  68. Laser speckle-imaging of blood microcirculation in the brain cortex of laboratory rats in stress

    Kvantovaya Elektronika, 42:6 (2012),  489–494
  69. Visualisation of distribution of gold nanoparticles in liver tissues ex vivo and in vitro using the method of optical coherence tomography

    Kvantovaya Elektronika, 42:6 (2012),  478–483
  70. Use of fractional laser microablation and ultrasound to facilitate the delivery of gold nanoparticles into skin in vivo

    Kvantovaya Elektronika, 42:6 (2012),  471–477
  71. Laser technologies in biophotonics

    Kvantovaya Elektronika, 42:5 (2012),  379
  72. The study of nail bed microcirculation by laser speckleimaging technique

    Izv. Sarat. Univ. Physics, 11:2 (2011),  14–19
  73. Contrasting in optical coherence tomography imaging of liver by nanoparticles

    Izv. Sarat. Univ. Physics, 11:2 (2011),  10–14
  74. Visualization of penetration of TiO$_2$ nanoparticles into tooth tissues samples using optical coherence tomography

    Izv. Sarat. Univ. Physics, 11:2 (2011),  5–9
  75. Saratov local cluster organized in the framework of the 7th framework programme of commission of the European communities «Photonics4Life»

    Izv. Sarat. Univ. Physics, 11:2 (2011),  3–4
  76. Cortexin diffusion in human eye sclera

    Kvantovaya Elektronika, 41:5 (2011),  407–413
  77. Fractional laser microablation of skin aimed at enhancing its permeability for nanoparticles

    Kvantovaya Elektronika, 41:5 (2011),  396–401
  78. Phototoxic effect of conjugates of plasmon-resonance nanoparticles with indocyanine green dye on Staphylococcus aureus induced by IR laser radiation

    Kvantovaya Elektronika, 41:4 (2011),  354–359
  79. Specific features of diffuse reflection of human face skin for laser and non-laser sources of visible and near-IR light

    Kvantovaya Elektronika, 41:4 (2011),  329–334
  80. Speckle-correlation analysis of the microcapillary blood circulation in nail bed

    Kvantovaya Elektronika, 41:4 (2011),  324–328
  81. The use of hollow-core photonic crystal fibres as biological sensors

    Kvantovaya Elektronika, 41:4 (2011),  302–307
  82. Photonic crystal fibres in biomedical investigations

    Kvantovaya Elektronika, 41:4 (2011),  284–301
  83. Application of optical technologies in biophysics and medicine

    Kvantovaya Elektronika, 41:4 (2011),  283
  84. On the problem of local tissue hyperthermia control: multiscale modelling of pulsed laser radiation action on a medium with embedded nanoparticles

    Kvantovaya Elektronika, 40:12 (2010),  1081–1088
  85. Ballistic auto-correlation interferometry

    Izv. Sarat. Univ. Physics, 9:2 (2009),  3–13
  86. Photodynamic influence of red (625 nm) and infra-red (805 nm) radiation on bacteria P. Acnes processed by photosensitizes

    Izv. Sarat. Univ. Physics, 8:1 (2008),  21–26
  87. Mathematical model of drags and immersion liquids diffusion in human ocular tissues

    Izv. Sarat. Univ. Physics, 8:1 (2008),  15–20
  88. Terahertz time-domain spectroscopy of biological tissues

    Kvantovaya Elektronika, 38:7 (2008),  647–654
  89. Possibility of increasing the efficiency of laser-induced tattoo removal by optical skin clearing

    Kvantovaya Elektronika, 38:6 (2008),  580–587
  90. Functional imaging and assessment of the glucose diffusion rate in epithelial tissues in optical coherence tomography

    Kvantovaya Elektronika, 38:6 (2008),  551–556
  91. Laser photothermolysis of biological tissues by using plasmon-resonance particles

    Kvantovaya Elektronika, 38:6 (2008),  536–542
  92. Dynamic ultramicroscopy of laser-induced flows in colloidal solutions of plasmon-resonance particles

    Kvantovaya Elektronika, 38:6 (2008),  530–535
  93. Laser technologies in biophotonics and biomedical applications

    Kvantovaya Elektronika, 38:6 (2008),  503
  94. Visualisation of the distributions of melanin and indocyanine green in biological tissues

    Kvantovaya Elektronika, 38:3 (2008),  263–268
  95. Jubilee of Chair of Optics and Biomedical Physics and 100-years anniversary of its founder – professor Mark L'vovich Katz

    Izv. Sarat. Univ. Physics, 7:1 (2007),  65–74
  96. Optical clearing of the eye sclera in vivo caused by glucose

    Kvantovaya Elektronika, 36:12 (2006),  1119–1124
  97. Estimate of the melanin content in human hairs by the inverse Monte-Carlo method using a system for digital image analysis

    Kvantovaya Elektronika, 36:12 (2006),  1111–1118
  98. Optical biomedical diagnostics

    Izv. Sarat. Univ. Physics, 5:1 (2005),  39–53
  99. Recording of lymph flow dynamics in microvessels using correlation properties of scattered coherent radiation

    Kvantovaya Elektronika, 32:11 (2002),  970–974
  100. Study of the possibility of increasing the probing depth by the method of reflection confocal microscopy upon immersion clearing of near-surface human skin layers

    Kvantovaya Elektronika, 32:10 (2002),  875–882
  101. Optical tomography of tissues

    Kvantovaya Elektronika, 32:10 (2002),  849–867
  102. Light scattering study of tissues

    UFN, 167:5 (1997),  517–539
  103. Pulse profile and transitions to chaos in a laser with a saturable absorber

    Kvantovaya Elektronika, 19:8 (1992),  757–761
  104. Parameter modulation in a laser with a saturable absorber

    Kvantovaya Elektronika, 18:9 (1991),  1066–1069
  105. Bifurcations and stochasticity induced by an external noise in a laser with a nonlinear absorber

    Kvantovaya Elektronika, 15:9 (1988),  1885–1894
  106. Quasiperiodic fluctuations and chaos in a gas-discharge laser with active mode locking

    Kvantovaya Elektronika, 15:9 (1988),  1826–1832
  107. Investigation of the transverse distribution of intensity perturbations by probing lens-like media with laser radiation

    Kvantovaya Elektronika, 10:11 (1983),  2272–2277
  108. Determination of the rate of relaxation of the 0001 vibrational level of the CO2 molecule in a waveguide gasdischarge structure

    Kvantovaya Elektronika, 8:6 (1981),  1321–1324
  109. Intensity fluctuations in the emission from an argon ion laser

    Kvantovaya Elektronika, 6:7 (1979),  1539–1542
  110. Some features of the influence of discharge-current fluctuations on the output radiation of an He–Cd+ laser

    Kvantovaya Elektronika, 5:1 (1978),  160–163
  111. Technical fluctuations of the radiation emitted from a laser with an absorption cell

    Kvantovaya Elektronika, 4:5 (1977),  1117–1121
  112. Modulation method for determination of the degree of excitation of a gas laser

    Kvantovaya Elektronika, 4:4 (1977),  885–887
  113. Corrections to "Modulation of He–Ne laser radiation by discharge current perturbations" [Sov. J. Quantum Electron. 5, 678 (1975)]

    Kvantovaya Elektronika, 2:10 (1975),  2355–2356
  114. Modulation of Не–Nе laser radiation by discharge current perturbations

    Kvantovaya Elektronika, 2:6 (1975),  1253–1262
  115. Modulation of gas laser radiation by an alternating magnetic field

    Kvantovaya Elektronika, 2:4 (1975),  788–793
  116. Resonant enhancement of the output power of a He–Ne laser due to modulation of the discharge current

    Kvantovaya Elektronika, 2:1 (1975),  146–148

  117. Специальная секция “Биофотоника” памяти Владимира Леонидовича Кузьмина

    Optics and Spectroscopy, 133:12 (2025),  1229–1232
  118. On the 95th anniversary of the Honored Professor of Lomonosov Moscow State University Yuri Mikhailovich Romanovsky

    Izv. Sarat. Univ. Physics, 24:4 (2024),  326–327
  119. Proceedings of the XXVI Annual International Conference – Saratov Fall Meeting 2022 (September 26–30, 2022, Saratov, Russia)

    Optics and Spectroscopy, 131:6 (2023),  715–716
  120. In memory of Yurii Mikhailovich Romanovsky

    UFN, 193:2 (2023),  229–230
  121. Works on laser biophotonics

    Kvantovaya Elektronika, 52:1 (2022),  1
  122. Memories of a teacher, colleague and friend Vadim S. Anishchenko (1943-2020)

    Izv. Sarat. Univ. Physics, 21:1 (2021),  88–101
  123. Sonophoretic acceleration of degradation process for vaterite particles delivered into the hair follicles

    Izv. Sarat. Univ. Physics, 21:1 (2021),  80–85
  124. Laser biophotonics

    Kvantovaya Elektronika, 51:1 (2021),  1
  125. Биофотоника

    Optics and Spectroscopy, 128:6 (2020),  734–735
  126. Topical problems of biophotonics

    Kvantovaya Elektronika, 50:1 (2020),  1
  127. In memory of Dmitrii Ivanovich Trubetskov

    UFN, 190:10 (2020),  1117–1118
  128. Laser biophotonics

    Kvantovaya Elektronika, 49:1 (2019),  1
  129. To the jubilee of Alexander Vasil’evich Priezzhev

    Izv. Sarat. Univ. Physics, 17:2 (2017),  121–126
  130. Laser biophotonics

    Kvantovaya Elektronika, 46:6 (2016),  487


© Steklov Math. Inst. of RAS, 2026