RUS  ENG
Full version
PEOPLE

Korobeinichev Oleg Pavlovich

Publications in Math-Net.Ru

  1. Numerical justification of the laboratory technique for testing of fire-extinguishing powders

    Chelyab. Fiz.-Mat. Zh., 9:2 (2024),  324–336
  2. Method for measuring heat fluxes in solid fuel flames using semiconductor sensors

    Fizika Goreniya i Vzryva, 60:2 (2024),  47–55
  3. Estimation of the characteristic time scale of a laminar flame by the PIV method

    Fizika Goreniya i Vzryva, 59:6 (2023),  19–26
  4. Measuring the surface temperature of a molecular beam probe in the flame front at pressures of $1$$5$ atm

    Fizika Goreniya i Vzryva, 55:5 (2019),  47–54
  5. Combustion of ethyl acetate: the experimental study of flame structure and validation of chemical kinetic mechanisms

    Mendeleev Commun., 29:6 (2019),  690–692
  6. Comparative analysis of the chemical structure of ethyl butanoate and methyl pentanoate flames

    Fizika Goreniya i Vzryva, 54:2 (2018),  3–14
  7. Combustion chemistry of ternary fuel mixtures of hydrogen and C$_1$–C$_4$ hydrocarbons at atmospheric pressure

    Fizika Goreniya i Vzryva, 53:5 (2017),  3–12
  8. Experimental and numerical investigation of the chemical reaction kinetics in syngas H$_2$/ÑO flame at a pressure of 1–10 atm

    Fizika Goreniya i Vzryva, 53:4 (2017),  23–33
  9. Autoignition mechanism of dimethyl ether–air mixtures in the presence of atomic iron

    Fizika Goreniya i Vzryva, 53:3 (2017),  27–32
  10. Numerical study of fire spread over the forest fuel

    CPM, 18:4 (2016),  509–514
  11. Promoting effect of halogenand phosphorus-containing flame retardants on the autoignition of a methane-oxygen mixture

    Fizika Goreniya i Vzryva, 52:4 (2016),  3–14
  12. Structure of ultrahigh molecular weight polyethylene-air counterflow flame

    Fizika Goreniya i Vzryva, 52:3 (2016),  8–22
  13. Catalytic effect of submicron TiO$_2$ particles on the methane–air flames speed

    Fizika Goreniya i Vzryva, 52:2 (2016),  35–48
  14. Structure of an $n$-heptane/toluene flame: molecular beam mass spectrometry and computer simulation investigations

    Fizika Goreniya i Vzryva, 52:2 (2016),  21–34
  15. Experimental and numerical study of the structure of a premixed methyl decanoate/oxygen/argon flame

    Fizika Goreniya i Vzryva, 51:3 (2015),  3–11
  16. Spatial and temporal resolution of the particle image velocimetry technique in flame speed measurements

    Fizika Goreniya i Vzryva, 50:5 (2014),  13–21
  17. Skeletal mechanism of inhibition and suppression of a hydrogen flame by addition of trimethylphosphate

    Fizika Goreniya i Vzryva, 50:3 (2014),  3–8
  18. Skeletal mechanism of inhibition and suppression of a methane-air flame by addition of trimethyl phosphate

    Fizika Goreniya i Vzryva, 50:2 (2014),  9–13
  19. Multistage mechanism of thermal decomposition of hydrogen azide

    Fizika Goreniya i Vzryva, 50:1 (2014),  13–29
  20. Effect of ethanol on the chemistry of formation of precursors of polyaromatic hydrocarbons in a fuel-rich ethylene flame at atmospheric pressure

    Fizika Goreniya i Vzryva, 48:6 (2012),  3–20
  21. Investigation of the effect of ethanol additives on the structure of low-pressure ethylene flames by photoionization mass spectrometry

    Fizika Goreniya i Vzryva, 48:5 (2012),  130–141
  22. Reduced kinetic mechanism for combustion of synthesis gas at elevated temperatures and pressures

    Fizika Goreniya i Vzryva, 48:5 (2012),  109–121
  23. Reducing the flammability of ultra-high-molecular-weight polyethylene by triphenyl phosphate additives

    Fizika Goreniya i Vzryva, 48:5 (2012),  97–108
  24. Terahertz free-electron laser radiation to determine water concentration in flames

    Fizika Goreniya i Vzryva, 48:4 (2012),  16–22
  25. Dependence of the lower flammability limit on the initial temperature

    Fizika Goreniya i Vzryva, 48:2 (2012),  3–8
  26. Synthesis of mesoporous nanocrystalline TiO$_2$ films in a premixed H$_2$/O$_2$/Ar flame

    Fizika Goreniya i Vzryva, 48:1 (2012),  55–63
  27. Experimental and numerical studies of the lower flammability limit of mixtures of C1–C5 hydrocarbons with air

    Fizika Goreniya i Vzryva, 47:6 (2011),  42–49
  28. Perturbations of the flame structure due to a thermocouple. II. Modeling

    Fizika Goreniya i Vzryva, 47:4 (2011),  46–58
  29. Perturbations of the flame structure due to a thermocouple. I. Experiment

    Fizika Goreniya i Vzryva, 47:4 (2011),  34–45
  30. Increasing the burning velocity of a low-pressure hydrogen-oxygen flame by the addition of trimethyl phosphate in terms of Zel’dovich’s chain mechanism of flame propagation

    Fizika Goreniya i Vzryva, 47:1 (2011),  15–21
  31. Structure of an atmospheric-pressure H$_2$/O$_2$/N$_2$ flame doped with iron pentacarbonyl

    Fizika Goreniya i Vzryva, 47:1 (2011),  3–14
  32. Using terahertz radiation to detect OH radicals and NO molecules in flames

    Fizika Goreniya i Vzryva, 46:2 (2010),  36–41
  33. Chain-branching reactions in the processes of promotion and inhibition of hydrogen combustion

    Fizika Goreniya i Vzryva, 46:2 (2010),  26–35
  34. Fire suppression by aerosols of aqueous solutions of salts

    Fizika Goreniya i Vzryva, 46:1 (2010),  20–25
  35. Detection of paramagnetic particles in a flame using terahertz radiation

    Mendeleev Commun., 20:1 (2010),  55–56
  36. Applicability of Zel’dovich’s theory of chain propagation of flames to combustion of hydrogen-oxygen mixtures

    Fizika Goreniya i Vzryva, 45:5 (2009),  3–7
  37. Study of the CL-20 flame structure using probing molecular beam mass spectrometry

    Fizika Goreniya i Vzryva, 45:3 (2009),  58–65
  38. HMX flame structure for combustion in air at a pressure of 1 atm

    Fizika Goreniya i Vzryva, 44:6 (2008),  26–43
  39. Suppression of hydrocarbon flames by organophosphorus compounds and their based mixtures

    Fizika Goreniya i Vzryva, 44:3 (2008),  22–29
  40. Effect of the equivalence ratio on the effectiveness of inhibition of laminar premixed hydrogen-air and hydrocarbon-air flames by trimethylphosphate

    Fizika Goreniya i Vzryva, 44:2 (2008),  14–22
  41. RDX flame structure at atmospheric pressure

    Fizika Goreniya i Vzryva, 44:1 (2008),  49–62
  42. Effect of trimethylphosphate additives on the flammability concentration limits of premixed methane-air mixtures

    Fizika Goreniya i Vzryva, 44:1 (2008),  12–21
  43. Effect of the addition of triphenylphosphine oxide, hexabromocyclododecane, and ethyl bromide on a CH$_4$/O$_2$/N$_2$ flame at atmospheric pressure

    Fizika Goreniya i Vzryva, 43:5 (2007),  12–20
  44. Propagation velocity of hydrocarbon-air flames containing organophosphorus compounds at atmospheric pressure

    Fizika Goreniya i Vzryva, 43:3 (2007),  9–14
  45. Influence of organophosphorus inhibitors on the structure of atmospheric lean and rich methane-oxygen flames

    Fizika Goreniya i Vzryva, 43:2 (2007),  23–31
  46. On the mechanism of action of phosphorus-containing retardants

    Mendeleev Commun., 17:3 (2007),  186–187
  47. The chemistry of combustion of organophosphorus compounds

    Usp. Khim., 76:11 (2007),  1094–1121
  48. Testing ogranophosphorus, organofluorine, and metal-containing compounds and solid-propellant gas-generating compositions doped with phosphorus-containing additives as effective fire suppressants

    Fizika Goreniya i Vzryva, 42:6 (2006),  64–73
  49. Molecular-beam mass-spectrometric study of the flame structure of composite propellants based on nitramines and glycidyl azide polymer at a pressure of 1 MPa

    Fizika Goreniya i Vzryva, 42:6 (2006),  48–57
  50. Promotion and inhibition of a hydrogen–oxygen flame by the addition of trimethyl phosphate

    Fizika Goreniya i Vzryva, 42:5 (2006),  3–13
  51. Investigation of the structure of a ÑÍ$_4$/N$_2$–Î$_2$/N$_2$ counterflow diffusion flame using molecular beam and microprobe mass spectrometry

    Fizika Goreniya i Vzryva, 42:4 (2006),  26–33
  52. Thermal decomposition of ammonium dinitramide vapor in a two-temperature flow reactor

    Fizika Goreniya i Vzryva, 38:3 (2002),  37–47
  53. Inhibition of methane–oxygen flames by organophosphorus compounds

    Fizika Goreniya i Vzryva, 38:2 (2002),  3–10
  54. Probe method for sampling solid-propellant combustion products at temperatures and pressures typical of a rocket combustion chamber

    Fizika Goreniya i Vzryva, 38:1 (2002),  92–104
  55. Laminar flame structure in a low-pressure premixed H$_2$/O$_2$/Ar mixture

    Fizika Goreniya i Vzryva, 35:3 (1999),  29–34
  56. Destruction chemistry of organophosphorus compounds in hydrogen-oxygen flames

    Fizika Goreniya i Vzryva, 33:3 (1997),  32–48
  57. Study of the structure of a ten-atmosphere H$_2$–Î$_2$–Ar flame using molecular-beam inlet mass-spectrometrometric probing

    Fizika Goreniya i Vzryva, 32:3 (1996),  3–10
  58. Kinetic mechanism of the reaction of NH$_2$ with O$_2$ in O-, H-, and N-containing flames. II. Estimation of kinetic parameters of the stages involving NH$_2$O$_2$, HNOOH, and NH$_2$O

    Fizika Goreniya i Vzryva, 30:3 (1994),  41–49
  59. On the kinetic mechanism of the reaction of NH$_2$ with O$_2$ in O-, H-, and N-containing flames. I. Kinetic parameters of the NH$_2$ + O$_2$ = NHO+OH reaction

    Fizika Goreniya i Vzryva, 30:1 (1994),  60–65
  60. Study of flame structure for mixed solid fuels based on ammonium perchlorate and polybutadiene rubber

    Fizika Goreniya i Vzryva, 28:4 (1992),  59–65
  61. Flame structure, kinetics and mechanism of chemical reactions in flames of mixed composition based on ammonium perchlorate and polybutadiene rubber

    Fizika Goreniya i Vzryva, 28:4 (1992),  53–59
  62. Investigation of the kinetics and the chemical reaction mechanism in the flame of a mixed compound, based on ammonium perchlorate and polybutadiene rubber

    Fizika Goreniya i Vzryva, 26:3 (1990),  46–55
  63. Investigation of the flame structure of ammonium perchlorate based layered systems

    Fizika Goreniya i Vzryva, 26:2 (1990),  53–58
  64. Mechanism and kinetics of the thermal decomposition of composite systems based on ammonium perchlorate

    Fizika Goreniya i Vzryva, 25:6 (1989),  57–64
  65. Processes in hexogene flames

    Fizika Goreniya i Vzryva, 24:4 (1988),  21–29
  66. Dynamic flame probe mass spectrometry and condensed-system decomposition

    Fizika Goreniya i Vzryva, 23:5 (1987),  64–76
  67. Study of the kinetics and mechanism of chemical reactions in hexogen flames

    Fizika Goreniya i Vzryva, 22:5 (1986),  54–64
  68. Heat transfer between flame and probe in mass-spectrometric research on flame structure

    Fizika Goreniya i Vzryva, 22:2 (1986),  45–51
  69. Substantiation of the probe mass-spectrometric method for studying the structure of flames with narrow combustion zones

    Fizika Goreniya i Vzryva, 21:5 (1985),  22–28
  70. Investigation of the chemical structure of the HMX flame

    Fizika Goreniya i Vzryva, 20:3 (1984),  43–46
  71. Kinetics and mechanism of the thermooxidative destruction of polybutadiene rubber in perchloric acid vapor

    Fizika Goreniya i Vzryva, 19:3 (1983),  88–94
  72. Correctness of mass-spectrometric probe measurements when investigating the flame structure of condensed systems

    Fizika Goreniya i Vzryva, 18:6 (1982),  39–45
  73. Mass-spectrometric study of the chemical structures of flames of perchloric acid in lean and rich mixtures with methane

    Fizika Goreniya i Vzryva, 18:5 (1982),  77–83
  74. Kinetic calculations and mechanism definition for reactions in an ammonium perchlorate flame

    Fizika Goreniya i Vzryva, 18:2 (1982),  61–70
  75. Measurement of the concentration profiles of reacting components and temperature in an ammonium perchlorate flame

    Fizika Goreniya i Vzryva, 18:1 (1982),  46–49
  76. Mass-spectrometric investigation of the chemical structure of the flames of chloric acid in a stoichiometric mixture with methane

    Fizika Goreniya i Vzryva, 17:6 (1981),  55–62
  77. Mass spectrometry of flame structure for condensed systems with molecular-beam sampling

    Fizika Goreniya i Vzryva, 17:2 (1981),  86–89
  78. The Use of Mass Spectrometry to Study the Structure of Flames and Combustion Processes

    Usp. Khim., 49:6 (1980),  945–965
  79. Combustion of heterogeneous systems with constituents capable of evaporating and reacting in the condensed and gas phases

    Fizika Goreniya i Vzryva, 15:2 (1979),  80–88
  80. Investigation of effect of oxide and organometallic catalysts on thermal decomposition and combustion of a model ammonium perchlorate-polymer system

    Fizika Goreniya i Vzryva, 13:4 (1977),  550–558
  81. Investigation of the structure of a combustion wave of mixed systems based on APC, PMMA, and a catalyst using mass-spectrometric and thermocouple methods

    Fizika Goreniya i Vzryva, 13:3 (1977),  335–342
  82. Mass-spectroscopic investigation of the kinetics of the high-temperature decomposition of ammonium perchlorate (APC)

    Fizika Goreniya i Vzryva, 12:4 (1976),  633–636
  83. Investigation of the structure of the extinguished surface of a catalyzed mixture of the composition APC – PMMA

    Fizika Goreniya i Vzryva, 10:3 (1974),  345–353
  84. Effect of an oxidizer on the destruction rate of a polymer binder

    Fizika Goreniya i Vzryva, 9:4 (1973),  599
  85. Kinftics of catalytic reactions in the thermal decomposition of perchloric acid and ammonium perchlorate

    Fizika Goreniya i Vzryva, 9:2 (1973),  199–204
  86. Kinetics of catalytic decomposition of ammonium perchlorate and its mixtures with polystyrene

    Fizika Goreniya i Vzryva, 9:1 (1973),  67–75
  87. Mechanism of catalyst activity in combustion of condensed systems

    Fizika Goreniya i Vzryva, 8:4 (1972),  511–517
  88. Model of the catalysis of burning of a monopropellant (with reference to ammonium perchlorate)

    Fizika Goreniya i Vzryva, 8:3 (1972),  378–388
  89. Microscopic and electron-microscopic study of catalysis of ammonium perchlorate combustion

    Fizika Goreniya i Vzryva, 8:2 (1972),  323–324
  90. Mass-spectrometer study of the thermal decomposition of nitroglycerine powder at high temperatures

    Fizika Goreniya i Vzryva, 6:3 (1970),  404–406
  91. Time-of-flight mass spectrometer as a means of investigating the thermal decomposition of an ammonium perchlorate-polystyrene propellant

    Fizika Goreniya i Vzryva, 6:2 (1970),  248–250
  92. Application of Mass-spectrometry to the Study of the Decomposition Kinetics and Mechanisms of Solids

    Usp. Khim., 38:12 (1969),  2113–2128
  93. Use of a pulse mass spectrometer to investigate the high-speed processes associated with the high-temperature decomposition of ammonium perchlorate

    Fizika Goreniya i Vzryva, 4:1 (1968),  33–38

  94. 9-é Ìåæäóíàðîäíûé ñåìèíàð ïî ñòðóêòóðå ïëàìåíè (9ISFS)

    Fizika Goreniya i Vzryva, 53:6 (2017),  144–146
  95. 7-é Ìåæäóíàðîäíûé ñåìèíàð ïî ñòðóêòóðå ïëàìåíè è 1-ÿ øêîëà äëÿ ìîëîäûõ ó÷åíûõ ïî èññëåäîâàíèþ ïëàìåí

    Fizika Goreniya i Vzryva, 48:5 (2012),  3–4


© Steklov Math. Inst. of RAS, 2026