RUS  ENG
Full version
PEOPLE

Baranov V Yu

Publications in Math-Net.Ru

  1. Laser photolysis of UF6 molecules

    Kvantovaya Elektronika, 28:2 (1999),  95–109
  2. Characteristic features of the photolysis of UF6 molecules in a mixture with hydrogen by radiation from a repetitively pulsed CF4 laser

    Kvantovaya Elektronika, 25:7 (1998),  641–646
  3. Characteristic features of the dissociation of UF6 molecules in the radiation field of a pulse-periodic CF4 laser

    Kvantovaya Elektronika, 24:7 (1997),  613–616
  4. Optically pumped pulse-periodic CF4 laser

    Kvantovaya Elektronika, 23:9 (1996),  782–784
  5. Doppler CO2 lidar for measuring the wind velocity

    Kvantovaya Elektronika, 19:7 (1992),  718–719
  6. Dynamics of lasing of two TEA СО2 lasers coupled by a nonlinear SF6 cell

    Kvantovaya Elektronika, 18:10 (1991),  1216–1217
  7. Determination of the spatial and temporal characteristics of TEA CO2 laser microsecond radiation used in laser processing of materials

    Kvantovaya Elektronika, 17:12 (1990),  1590–1592
  8. Reasons for a reduction in the efficiency of a pulse-periodic CO2 laser with a non-self-sustained discharge at increased input energies

    Kvantovaya Elektronika, 17:5 (1990),  558–560
  9. Isotopically selective dissociation of CH3SiF3 and C6H5SiF3 molecules by CO2 laser pulses

    Kvantovaya Elektronika, 17:4 (1990),  517–519
  10. Space–time distribution of CO2 laser radiation on the surface of a target in the presence of an optical-breakdown plasma

    Kvantovaya Elektronika, 17:3 (1990),  359–363
  11. Influence of deformation of the density profile in a laser plasma on the angular characteristics of the scattered radiation at the fundamental frequency of a laser

    Kvantovaya Elektronika, 16:8 (1989),  1649–1651
  12. Influence of self-interaction on the frequency instability of a CO2 laser

    Kvantovaya Elektronika, 16:6 (1989),  1167–1172
  13. Laser-pumped C2D2 laser

    Kvantovaya Elektronika, 16:6 (1989),  1104–1109
  14. Dynamics of stimulated parametric scattering of CO2 laser radiation in SF6

    Kvantovaya Elektronika, 15:11 (1988),  2355–2357
  15. Frequency locking of two TEA CO2 lasers utilizing a four-wave interaction in SF6

    Kvantovaya Elektronika, 15:11 (1988),  2335–2337
  16. Conversion of λ = 308 nm radiation at pulse repetition frequencies up to 600 Hz by stimulated Raman scattering in compressed hydrogen

    Kvantovaya Elektronika, 15:10 (1988),  2030–2037
  17. Divergence of radiation from an electric-discharge XeCl laser operating in the pulse-periodic regime

    Kvantovaya Elektronika, 15:9 (1988),  1712–1719
  18. Influence of a buffer gas on multiphoton dissociation of molecules in the radiation field of a pulsed CO2 laser

    Kvantovaya Elektronika, 15:4 (1988),  732–737
  19. Dynamics of splashing of molten metals during irradiation with single CO2 laser pulses

    Kvantovaya Elektronika, 15:3 (1988),  638–640
  20. Influence of surface breakdown on the process of drilling metals with pulsed CO2 laser radiation

    Kvantovaya Elektronika, 15:3 (1988),  539–543
  21. CATHODE LAYER OF A GLOW-DISCHARGE SUPPORTED BY THE MEAN-ENERGY ELECTRON-BEAM

    Zhurnal Tekhnicheskoi Fiziki, 57:7 (1987),  1317–1323
  22. Influence of a target on operation of a pulsed CO2 laser emitting microsecond pulses

    Kvantovaya Elektronika, 14:12 (1987),  2489–2491
  23. Investigation of physical processes in the active medium of a pulsed CO2 laser responsible for variation of the laser frequency during a pulse

    Kvantovaya Elektronika, 14:12 (1987),  2441–2445
  24. Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse

    Kvantovaya Elektronika, 14:11 (1987),  2252–2254
  25. Wide-aperture electric-discharge XeCl laser with ultraviolet preionization and 20-J output energy

    Kvantovaya Elektronika, 14:8 (1987),  1542–1551
  26. Optically pumped pulse-periodic C2D2 laser

    Kvantovaya Elektronika, 14:6 (1987),  1213–1214
  27. Acoustic vibrations in the gas-discharge chamber of a fast-flow pulse-periodic laser

    Kvantovaya Elektronika, 14:6 (1987),  1206–1212
  28. Influence of the laser radiation field on the absorption of pump radiation in a three-level system

    Kvantovaya Elektronika, 14:4 (1987),  834–835
  29. Resonant self-interaction of CO2 laser pulses in SF6

    Kvantovaya Elektronika, 14:4 (1987),  707–713
  30. Two-frequency excitation of NH3 under fast rotational relaxation conditions

    Kvantovaya Elektronika, 14:2 (1987),  415–417
  31. Thermohydrodynamic models of the interaction of pulse-periodic radiation with matter

    Kvantovaya Elektronika, 14:2 (1987),  271–278
  32. Spectral characteristics of the excimer XeCI in the wavelength range 300–311 nm

    Kvantovaya Elektronika, 14:1 (1987),  80–86
  33. Stimulated emission spectrum of an XeCl laser

    Kvantovaya Elektronika, 13:11 (1986),  2216–2220
  34. Experimental and theoretical investigation of a pulsed laser utilizing the CF4 molecule

    Kvantovaya Elektronika, 13:11 (1986),  2167–2175
  35. Stabilization of the composition of the gaseous medium in a pulse-periodic CO2 laser by hopcalite

    Kvantovaya Elektronika, 13:5 (1986),  989–992
  36. Isotopically selective dissociation of COCl2 molecules in the radiation field of a pulsed CO laser

    Kvantovaya Elektronika, 13:1 (1986),  206–207
  37. Energy and spectral characteristics of a pulse-periodic NH3 laser

    Kvantovaya Elektronika, 12:9 (1985),  1968–1969
  38. Stimulated Raman scattering of radiation from an electric-discharge pulse-periodic XeCI laser in compressed H2

    Kvantovaya Elektronika, 12:5 (1985),  1100–1102
  39. Influence of electrode processes on the constriction of a volume discharge in pulse-periodic lasers

    Kvantovaya Elektronika, 12:5 (1985),  971–977
  40. Isotopically selective dissociation of Freon 12 molecules in a single-frequency pulsed CO2 laser field

    Kvantovaya Elektronika, 11:7 (1984),  1495–1497
  41. Ejection of material from a solid target subjected to the combined action of two laser pulses of differing durations

    Kvantovaya Elektronika, 11:6 (1984),  1220–1224
  42. Parametric investigation of a pulsed nonchain HF laser

    Kvantovaya Elektronika, 11:6 (1984),  1173–1179
  43. Pulse-periodic CO2 laser with a 1.5 kHz pulse repetition frequency

    Kvantovaya Elektronika, 11:4 (1984),  847–849
  44. Increase in the repetition frequency of XeCl laser pulses to 1 kHz

    Kvantovaya Elektronika, 11:4 (1984),  827–829
  45. Transient optical nutations in a CO2 amplifier

    Kvantovaya Elektronika, 11:2 (1984),  344–348
  46. Study of the conditions of formation of a uniform high-current sliding discharge

    TVT, 22:4 (1984),  661–666
  47. Reasons for the fall in the output power of a pulse-periodic XeCl laser during its operation

    Kvantovaya Elektronika, 10:11 (1983),  2336–2340
  48. Time-resolved spectral and energy characteristics of a pulsed nonchain HF laser

    Kvantovaya Elektronika, 10:10 (1983),  2075–2081
  49. Experiments on plasma heating by CO2 laser radiation in the TIR-1 facility

    Kvantovaya Elektronika, 10:8 (1983),  1533–1538
  50. Effect of λ =308 nm laser radiation on pyrolysis of 1,2-dichloroethane

    Kvantovaya Elektronika, 10:7 (1983),  1406–1412
  51. Characteristics of the pulse-periodic regime of excimer lasers

    Kvantovaya Elektronika, 10:3 (1983),  540–546
  52. Influence of rotational relaxation in a CO2 amplifier on the shape of a short amplified pulse

    Kvantovaya Elektronika, 9:9 (1982),  1862–1864
  53. Isotope separation by multiphoton dissociation of molecules using high-power CO2 laser radiation. Scaling of the process for carbon isotopes

    Kvantovaya Elektronika, 9:4 (1982),  743–759
  54. Effect of water-vapor on an externally maintained gas-discharge

    TVT, 20:6 (1982),  1038–1043
  55. Xenon fluoride laser emitting 2-nsec pulses of near-diffraction-limited divergence

    Kvantovaya Elektronika, 8:10 (1981),  2271–2274
  56. Optimization of the average power of pulsed-periodic KrF and XeCl excimer lasers

    Kvantovaya Elektronika, 8:9 (1981),  1909–1912
  57. Control of the divergence and spectrum of an XeCl laser

    Kvantovaya Elektronika, 8:9 (1981),  1861–1866
  58. Pulse-periodic CF4 laser with circulation of the working gas

    Kvantovaya Elektronika, 8:1 (1981),  231–233
  59. Excimer electric-discharge laser with plasma electrodes

    Kvantovaya Elektronika, 8:1 (1981),  165–167
  60. Use of a discharge over a dielectric surface for preionization in excimer lasers

    Kvantovaya Elektronika, 8:1 (1981),  77–82
  61. Influence of gas density perturbations on the ultimate characteristics of pulse-periodic lasers with ultraviolet preionization

    Kvantovaya Elektronika, 7:12 (1980),  2589–2593
  62. Formation of nanosecond 100 GW radiation pulses in the TIR-1 $CO_2$ laser system

    Kvantovaya Elektronika, 7:7 (1980),  1451–1455
  63. Control of the spectral power of an $XeF$ laser

    Kvantovaya Elektronika, 7:6 (1980),  1375–1376
  64. Excimer pulse-periodic laser

    Kvantovaya Elektronika, 7:4 (1980),  896–898
  65. Investigation of the characteristics of a pulsed $CF_4$-laser

    Kvantovaya Elektronika, 7:1 (1980),  87–90
  66. Small-signal gain of a pulsed large-volume CO2 amplifier

    Kvantovaya Elektronika, 6:12 (1979),  2621–2622
  67. Theoretical and experimental investigation of pulsed discharges in gases

    Kvantovaya Elektronika, 6:12 (1979),  2552–2561
  68. Stabilization of the frequency of a pulse-periodic TEA CO2 laser by injection of a signal from a low-pressure cw laser

    Kvantovaya Elektronika, 6:11 (1979),  2463–2466
  69. Isotope separation by multiphoton dissociation of molecules with high-power CO2 laser radiation. IV. Enrichment with 33S by irradiation of cooled SF6 gas

    Kvantovaya Elektronika, 6:5 (1979),  1062–1069
  70. Isotope separation by multiphoton dissociation of molecules with high-power CO2 laser radiation. III. Investigation of the process for sulfur isotopes and SF6 molecules

    Kvantovaya Elektronika, 6:4 (1979),  823–832
  71. Isotope separation by multiphoton dissociation of molecules with high-power CO2 laser radiation. II. Pulse-periodic CO2 lasers

    Kvantovaya Elektronika, 6:4 (1979),  811–822
  72. Gasdynamic perturbations of the gas stream in pulseperiodic CO2 lasers. II. Acoustic waves

    Kvantovaya Elektronika, 6:1 (1979),  184–188
  73. Gasdynamic perturbations of the gas stream in pulseperiodic CO2 lasers. I. Convective removal of the heated gas from the discharge region

    Kvantovaya Elektronika, 6:1 (1979),  177–183
  74. Changes in the characteristics of an electric-discharge XeF laser on increase in pressure

    Kvantovaya Elektronika, 5:10 (1978),  2285–2289
  75. Utilization efficiency of the gas flow in pulse-periodic CO2 lasers

    Kvantovaya Elektronika, 5:10 (1978),  2186–2195
  76. Free-oscillation stimulated emission from an electricdischarge CO2 laser in the nanosecond range of pulse durations

    Kvantovaya Elektronika, 5:5 (1978),  1141–1143
  77. Pulse-periodic operation of an optically pumped CF4 laser with an average output power of 0.2 W

    Kvantovaya Elektronika, 5:4 (1978),  940–943
  78. Emission of nanosecond pulses from a CO2 laser operating under free-oscillation conditions

    Kvantovaya Elektronika, 5:4 (1978),  918–920
  79. Spatial and temporal fluctuations of nanosecond radiation pulses in CO2 amplifiers

    Kvantovaya Elektronika, 5:3 (1978),  568–579
  80. Limits on pulse repetition frequency in periodically operated CO2 lasers

    Kvantovaya Elektronika, 4:9 (1977),  1861–1866
  81. High-repetition-rate pulsed $\rm CO_2$ laser

    TVT, 15:5 (1977),  972–976
  82. Pulsed $\mathrm{CO}_2$-laser with combined high current discharge

    Dokl. Akad. Nauk SSSR, 227:5 (1976),  1075–1078
  83. Changes in the parameters of a photoionization CO2 laser on increase of pressure to 10 atm

    Kvantovaya Elektronika, 3:3 (1976),  651–653
  84. Pulse-periodic CO2 laser with supersonic gas flow

    Kvantovaya Elektronika, 3:3 (1976),  649–650
  85. Three-dimensional structure of an isothermal supersonic $\rm Ar$$\rm Cs$ plasma stream under conditions of strong MHD interaction

    TVT, 14:6 (1976),  1287–1295
  86. Experimental plant with pulsed isothermal plasma generator for the study of MHD flows

    TVT, 14:5 (1976),  1061–1069
  87. Attainment of a homogeneous discharge in a large-volume pulse CO2 laser

    Kvantovaya Elektronika, 2:9 (1975),  2086–2088
  88. Amplfication of λ = 9.6 and 10.6 μ radiation

    Kvantovaya Elektronika, 2:4 (1975),  840–842
  89. Investigation of plasma supersonic flow deceleration in a magnetic field

    Dokl. Akad. Nauk SSSR, 219:6 (1974),  1338–1340
  90. Протекание тока через пограничные слои

    TVT, 11:3 (1973),  457–467
  91. Качественный анализ эффективности МГД-преобразования энергии

    TVT, 11:1 (1973),  167–173
  92. Разряд в потоке газа

    TVT, 10:6 (1972),  1156–1159
  93. Электрическая дуга в потоке аргона с цезием при наличии магнитного поля

    TVT, 6:1 (1968),  23–29
  94. Kinematics of the current layer in a plasma accelerator

    Prikl. Mekh. Tekh. Fiz., 7:5 (1966),  107–112
  95. Некоторые эффекты, наблюдаемые при изучении электрической дуги в потоке газа

    TVT, 4:5 (1966),  621–624
  96. Исследование неизотермической плазмы дуги в потоке аргона

    TVT, 3:2 (1965),  173–185
  97. Электрическая дуга в потоке аргона

    TVT, 2:5 (1964),  672–680

  98. Vladimir Borisovich Braginskii (on his seventieth birthday)

    UFN, 171:8 (2001),  909–910
  99. In memoriam — Peter A Franken

    Kvantovaya Elektronika, 27:3 (1999),  282
  100. Evgenii Pavlovich Velikhov (on his 60th birthday)

    UFN, 165:1 (1995),  119–120
  101. Errata to the article: Space–time distribution of CO2 laser radiation on the surface of a target in the presence of an optical-breakdown plasma

    Kvantovaya Elektronika, 17:6 (1990),  807
  102. Errata to the article: Influence of surface breakdown on the process of drilling metals with pulsed CO2 laser radiation

    Kvantovaya Elektronika, 15:5 (1988),  1080
  103. Third International Symposium on Gasdynamic and Chemical Lasers (Marseilles, September 8–12,1980)

    Kvantovaya Elektronika, 8:6 (1981),  1389–1392


© Steklov Math. Inst. of RAS, 2026