|
|
Publications in Math-Net.Ru
-
Lower bound of circuit complexity of parity function in a basis of unbounded fan-in
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 6, 48–51
-
A circuit of depth two with limited input branching for voting function
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 5, 58–60
-
Complexity of implementation of parity functions in the implication–negation basis
Diskr. Mat., 27:1 (2015), 73–97
-
Complexity and structure of circuits for parity functions
Fundam. Prikl. Mat., 20:6 (2015), 147–153
-
Upper estimate of realization complexity of linear functions in a basis consisting of multi-input elements
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 5, 47–50
-
On minimal circuts in Sheffer basis for linear Boolean functions
Diskretn. Anal. Issled. Oper., 20:4 (2013), 65–87
-
On minimal circuits for linear functions over some bases
Diskr. Mat., 25:1 (2013), 33–44
-
Complexity of realization of a linear Boolean function in Sheffer's basis
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 2, 49–53
-
On minimal realizations of linear Boolean functions
Diskretn. Anal. Issled. Oper., 19:3 (2012), 39–57
-
The minimal circuits for linear Boolean functions
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011, no. 6, 41–44
-
The Chair of Discrete Mathematics
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 6, 38–49
© , 2026