|
|
Publications in Math-Net.Ru
-
A criterion for the maximal period property of skew LRS over Galois rings
Mat. Vopr. Kriptogr., 16:4 (2025), 19–45
-
Elementary Abelian regular subgroups of vector space affine group related to cryptanalysis. II
Mat. Vopr. Kriptogr., 15:3 (2024), 9–47
-
Elementary Abelian regular subgroups of vector space affine group related to cryptanalysis
Mat. Vopr. Kriptogr., 14:4 (2023), 25–53
-
Representations of skew linear recurrent sequences of maximal period over finite field
Mat. Vopr. Kriptogr., 14:1 (2023), 27–43
-
Skew $\sigma$-splittable linear recurrent sequences with maximal period
Mat. Vopr. Kriptogr., 13:1 (2022), 33–67
-
New representaions of elements of skew linear recurrent sequences via trace function based on the noncommutative Hamilton – Cayley theorem
Mat. Vopr. Kriptogr., 12:1 (2021), 23–57
-
Methods of construction of skew linear recurrent sequences with maximal period based on the Galois polynomials factorization in the ring of matrix polynomials
Mat. Vopr. Kriptogr., 10:4 (2019), 25–51
-
Equidistant filters based on skew ML-sequences over fields
Mat. Vopr. Kriptogr., 9:2 (2018), 71–86
-
Non-commutative Hamilton–Cayley theorem and roots of characteristic polynomials of skew maximal period linear recurrences over Galois rings
Mat. Vopr. Kriptogr., 8:2 (2017), 65–76
-
The first digit sequence of skew linear recurrence of maximal period over Galois ring
Mat. Vopr. Kriptogr., 7:3 (2016), 5–18
-
Digit sequences of skew linear recurrences of maximal period over Galois rings
Mat. Vopr. Kriptogr., 6:2 (2015), 19–27
-
A construction of skew LRS of maximal period over finite fields based on the defining tuples of factors
Mat. Vopr. Kriptogr., 5:2 (2014), 37–46
-
Skew LRS of maximal period over Galois rings
Mat. Vopr. Kriptogr., 4:2 (2013), 59–72
-
Skew linear recurring sequences of maximal period over Galois rings
Fundam. Prikl. Mat., 17:3 (2012), 5–23
© , 2026