RUS  ENG
Full version
PEOPLE

Goltvanitsa Mikhail Aleksandrovich

Publications in Math-Net.Ru

  1. A criterion for the maximal period property of skew LRS over Galois rings

    Mat. Vopr. Kriptogr., 16:4 (2025),  19–45
  2. Elementary Abelian regular subgroups of vector space affine group related to cryptanalysis. II

    Mat. Vopr. Kriptogr., 15:3 (2024),  9–47
  3. Elementary Abelian regular subgroups of vector space affine group related to cryptanalysis

    Mat. Vopr. Kriptogr., 14:4 (2023),  25–53
  4. Representations of skew linear recurrent sequences of maximal period over finite field

    Mat. Vopr. Kriptogr., 14:1 (2023),  27–43
  5. Skew $\sigma$-splittable linear recurrent sequences with maximal period

    Mat. Vopr. Kriptogr., 13:1 (2022),  33–67
  6. New representaions of elements of skew linear recurrent sequences via trace function based on the noncommutative Hamilton – Cayley theorem

    Mat. Vopr. Kriptogr., 12:1 (2021),  23–57
  7. Methods of construction of skew linear recurrent sequences with maximal period based on the Galois polynomials factorization in the ring of matrix polynomials

    Mat. Vopr. Kriptogr., 10:4 (2019),  25–51
  8. Equidistant filters based on skew ML-sequences over fields

    Mat. Vopr. Kriptogr., 9:2 (2018),  71–86
  9. Non-commutative Hamilton–Cayley theorem and roots of characteristic polynomials of skew maximal period linear recurrences over Galois rings

    Mat. Vopr. Kriptogr., 8:2 (2017),  65–76
  10. The first digit sequence of skew linear recurrence of maximal period over Galois ring

    Mat. Vopr. Kriptogr., 7:3 (2016),  5–18
  11. Digit sequences of skew linear recurrences of maximal period over Galois rings

    Mat. Vopr. Kriptogr., 6:2 (2015),  19–27
  12. A construction of skew LRS of maximal period over finite fields based on the defining tuples of factors

    Mat. Vopr. Kriptogr., 5:2 (2014),  37–46
  13. Skew LRS of maximal period over Galois rings

    Mat. Vopr. Kriptogr., 4:2 (2013),  59–72
  14. Skew linear recurring sequences of maximal period over Galois rings

    Fundam. Prikl. Mat., 17:3 (2012),  5–23


© Steklov Math. Inst. of RAS, 2026