RUS  ENG
Full version
PEOPLE

Postnov Sergey Sergeevich

Publications in Math-Net.Ru

  1. $l$-Problem of moments in problems of optimal control and state estimation for multidimensional fractional linear systems

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 231 (2024),  107–114
  2. On the search for a time-optimal boundary control using the method of moments for systems governed by the diffusion-wave equation

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 225 (2023),  108–114
  3. Features of the phase dynamics of fractional two-dimensional linear control systems for various differentiation operator

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 217 (2022),  81–96
  4. On the statement and solvability of the $l$-problem of moments for fractional systems

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 206 (2022),  107–124
  5. Optimal control problem for systems modelled by diffusion-wave equation

    Vladikavkaz. Mat. Zh., 24:3 (2022),  108–119
  6. The $l$-moment problem and optimal control for systems modeled by fractional equations with multiparameter and “nonsingular” derivatives

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 199 (2021),  86–116
  7. On the dynamics of two-dimensional fractional linear control systems

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 182 (2020),  101–118
  8. Time-optimal boundary control for the systems described by fractional-order diffusion equation

    Avtomat. i Telemekh., 2018, no. 5,  137–152
  9. Optimal control problems for certain linear fractional-order systems given by equations with Hilfer derivative

    Probl. Upr., 2018, no. 5,  14–25
  10. Анализ цифровых изображений на основе формализма теории многих взаимодействующих частиц

    Intelligent systems. Theory and applications, 21:2 (2017),  57–74
  11. Optimal control problem for a linear stationary fractional order system in the form of a problem of moments: Problem setting and a study

    Avtomat. i Telemekh., 2014, no. 5,  3–17
  12. Investigation of two kinds of optimal control problem for fractional order pendulum using the method of moments

    Probl. Upr., 2014, no. 3,  14–22
  13. Fractional integro-differential calculus and its control-theoretical applications. II. Fractional dynamic systems: Modeling and hardware implementation

    Avtomat. i Telemekh., 2013, no. 5,  3–34
  14. Fractional integro-differential calculus and its control-theoretical applications. I. Mathematical fundamentals and the problem of interpretation

    Avtomat. i Telemekh., 2013, no. 4,  3–42
  15. Investigation of optimal control problem for single and double integrators of fractional order using the method of moments in case when admissible control belongs to $L_p[0,T]$ space

    Probl. Upr., 2013, no. 3,  9–17
  16. Investigation of optimal control problem for single and double integrators of fractional order using the problem of moments approach

    Probl. Upr., 2012, no. 5,  9–17
  17. Numerical calculation of sound absorbing structures (SAS) for modern aircraft engines

    Mat. Model., 19:8 (2007),  22–30


© Steklov Math. Inst. of RAS, 2026