|
|
Publications in Math-Net.Ru
-
$l$-Problem of moments in problems of optimal control and state estimation for multidimensional fractional linear systems
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 231 (2024), 107–114
-
On the search for a time-optimal boundary control using the method of moments for systems governed by the diffusion-wave equation
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 225 (2023), 108–114
-
Features of the phase dynamics of fractional two-dimensional linear control systems for various differentiation operator
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 217 (2022), 81–96
-
On the statement and solvability of the $l$-problem of moments for fractional systems
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 206 (2022), 107–124
-
Optimal control problem for systems modelled by diffusion-wave equation
Vladikavkaz. Mat. Zh., 24:3 (2022), 108–119
-
The $l$-moment problem and optimal control for systems modeled by fractional equations with multiparameter and “nonsingular” derivatives
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 199 (2021), 86–116
-
On the dynamics of two-dimensional fractional linear control systems
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 182 (2020), 101–118
-
Time-optimal boundary control for the systems described by fractional-order diffusion equation
Avtomat. i Telemekh., 2018, no. 5, 137–152
-
Optimal control problems for certain linear fractional-order systems given by equations with Hilfer derivative
Probl. Upr., 2018, no. 5, 14–25
-
Анализ цифровых изображений на основе формализма теории многих взаимодействующих частиц
Intelligent systems. Theory and applications, 21:2 (2017), 57–74
-
Optimal control problem for a linear stationary fractional order system in the form of a problem of moments: Problem setting and a study
Avtomat. i Telemekh., 2014, no. 5, 3–17
-
Investigation of two kinds of optimal control problem for fractional order pendulum using the method of moments
Probl. Upr., 2014, no. 3, 14–22
-
Fractional integro-differential calculus and its control-theoretical applications. II. Fractional dynamic systems: Modeling and hardware implementation
Avtomat. i Telemekh., 2013, no. 5, 3–34
-
Fractional integro-differential calculus and its control-theoretical applications. I. Mathematical fundamentals and the problem of interpretation
Avtomat. i Telemekh., 2013, no. 4, 3–42
-
Investigation of optimal control problem for single and double integrators of fractional order using the method of moments in case when admissible control belongs to $L_p[0,T]$ space
Probl. Upr., 2013, no. 3, 9–17
-
Investigation of optimal control problem for single and double integrators of fractional order using the problem of moments approach
Probl. Upr., 2012, no. 5, 9–17
-
Numerical calculation of sound absorbing structures (SAS) for modern aircraft engines
Mat. Model., 19:8 (2007), 22–30
© , 2026