RUS  ENG
Full version
PEOPLE

Molchanov Alexandr Pavlovich

Publications in Math-Net.Ru

  1. Robust Stability Test for Linear Non-Stationary Control Systems with Periodic Constraints

    Avtomat. i Telemekh., 1997, no. 5,  100–111
  2. Sufficient Conditions for Robust Stability of Linear Nonstationary Control Systems with Periodic Interval Constraints

    Avtomat. i Telemekh., 1997, no. 1,  100–107
  3. Robust absolute stability of nonstationary discrete systems with periodic constraints

    Avtomat. i Telemekh., 1995, no. 10,  93–100
  4. A numerical method for constructing Lyapunov functions and the analysis of the stability of nonlinear dynamical systems on a computer

    Avtomat. i Telemekh., 1994, no. 4,  23–38
  5. Lyapunov functions for nonlinear time-dependent discrete control systems with a periodic linear part

    Avtomat. i Telemekh., 1992, no. 10,  37–45
  6. Absolute stability of nonlinear time-dependent control systems with a periodic linear part

    Avtomat. i Telemekh., 1992, no. 2,  49–59
  7. On equivalence of two definitions of absolute stability for nonstationary control systems

    Avtomat. i Telemekh., 1988, no. 10,  187–189
  8. Lyapunov functions for nonlinear discrete-time control systems

    Avtomat. i Telemekh., 1987, no. 6,  26–35
  9. Criteria for the stability of selector-linear differential inclusions

    Dokl. Akad. Nauk SSSR, 297:1 (1987),  37–40
  10. Lyapunov functions detemining the necessary and sufficient conditions for absolute stability of nonlinear nostationary control systems. III

    Avtomat. i Telemekh., 1986, no. 5,  38–49
  11. The Lyapunov functions determining the necessary and sufficient conditions for absolute stability of nonlinear nostationary control systems. II

    Avtomat. i Telemekh., 1986, no. 4,  5–15
  12. Lyapunov finctions defining the necessary and sufficient conditions for absolute stability of nonlinear nonstationary control systems. I.

    Avtomat. i Telemekh., 1986, no. 3,  63–73
  13. The criterion of absolute stability for sampled data systems with a nonstationary nonlinearity. II

    Avtomat. i Telemekh., 1983, no. 6,  42–52
  14. Criterion of absolute stability for sampled data systems with a nonstationary nonlinearity. I

    Avtomat. i Telemekh., 1983, no. 5,  73–81
  15. Conditions for uniform absolute stability of nonlinear stationary pulsed systems

    Avtomat. i Telemekh., 1983, no. 3,  40–49
  16. Absolute instability of nonlinear nonstationarysystems. III

    Avtomat. i Telemekh., 1982, no. 3,  29–41
  17. Absolute instability of nonlinear nonstationary systems. II

    Avtomat. i Telemekh., 1982, no. 2,  17–28
  18. Absolute in stability of nonlinear nonstationary systems. I

    Avtomat. i Telemekh., 1982, no. 1,  19–27
  19. Uniform stability of finite-difference equations in the case of parametric perturbations

    Differ. Uravn., 17:12 (1981),  2250–2264
  20. Absolute stability of sampled-data systems incorporating several nonstationary nonlinear elements

    Avtomat. i Telemekh., 1979, no. 3,  43–51

  21. Qualitative Theory of Dynamical Systems. The Role of Stability-Preserving Mappings. Anthony N. Michel, Kaining Wang, and Bo Hu. 2nd Edition. New York: Marcel Dekker, 2000.

    Avtomat. i Telemekh., 2002, no. 6,  184–186


© Steklov Math. Inst. of RAS, 2026