RUS  ENG
Full version
PEOPLE

Tsyganova Julia Vladimirovna

Publications in Math-Net.Ru

  1. A general approach to constructing gradient methods for parameter identification based on modified weighted Gram – Schmidt orthogonalization and information-type discrete filtering algorithms

    Computer Research and Modeling, 17:5 (2025),  761–782
  2. A square-root method for identifying the parameters of discrete-time linear stochastic systems with unknown input signals

    Zhurnal SVMO, 27:3 (2025),  341–363
  3. Automation of interpretation of psychological testing results using artificial intelligence

    Uchenyye zapiski UlGU. Seriya "Matematika i informatsionnyye tekhnologii", 2024, no. 2,  111–120
  4. Construction and analysis of mathematical models in state space for a cardiac pacemaker control system

    Uchenyye zapiski UlGU. Seriya "Matematika i informatsionnyye tekhnologii", 2024, no. 2,  99–110
  5. Identification of parameters of convection–diffusion–reaction model and unknown boundary conditions in the presence of random noise in measurements

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:2 (2024),  345–366
  6. Analysis of methods for modeling human daily thermometry data

    Zhurnal SVMO, 24:4 (2022),  469–484
  7. Mathematical modeling of parameter identification process of convection-diffusion transport models using the SVD-based Kalman filter

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:4 (2021),  716–737
  8. Computer modeling of the dynamics of bank deposits

    Uchenyye zapiski UlGU. Seriya "Matematika i informatsionnyye tekhnologii", 2020, no. 1,  89–94
  9. A brief overview of controller software development tools for mobile robotics

    Uchenyye zapiski UlGU. Seriya "Matematika i informatsionnyye tekhnologii", 2020, no. 1,  54–57
  10. To the method of optimal discrete filtering of linear dynamic systems with state-dependent noises

    Uchenyye zapiski UlGU. Seriya "Matematika i informatsionnyye tekhnologii", 2019, no. 1,  120–125
  11. Active adaptation of a distributed multi-sensor filtering system

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:4 (2019),  724–743
  12. Adaptive estimation of a moving object trajectory using sequential hypothesis testing

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019),  156–162
  13. On the computation of derivatives within LD factorization of parametrized matrices

    Bulletin of Irkutsk State University. Series Mathematics, 23 (2018),  64–79
  14. On modern array algorithms for optimal discrete filtering

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018),  5–30
  15. Modelling and estimation of a moving object trajectory

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:3 (2017),  108–119
  16. Differentiating matrix orthogonal transformations

    Zh. Vychisl. Mat. Mat. Fiz., 55:9 (2015),  1460–1473
  17. A general approach to constructing parameter identification algorithms in the class of square root filters with orthogonal and $J$-orthogonal tranformations

    Avtomat. i Telemekh., 2014, no. 8,  59–81
  18. Robust filter algorithms — survey and new results for ship navigation and conning systems

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2013, no. 4,  90–112
  19. On the UD filter implementation methods

    University proceedings. Volga region. Physical and mathematical sciences, 2013, no. 3,  84–104
  20. On efficient parametric identification methods for linear discrete stochastic systems

    Avtomat. i Telemekh., 2012, no. 6,  34–51
  21. Computing the gradient of the auxiliary quality functional in the parametric identification problem for stochastic systems

    Avtomat. i Telemekh., 2011, no. 9,  142–160


© Steklov Math. Inst. of RAS, 2026