|
|
Publications in Math-Net.Ru
-
Half-space from $\mathbb Z^n$ forms a Chebyshev subspace in $L_1[0, 1]^n$
Trudy Inst. Mat. i Mekh. UrO RAN, 31:4 (2025), 62–70
-
Three-Dimensional Spaces Where All Bounded Chebyshev Sets Are Monotone Path Connected
Mat. Zametki, 114:3 (2023), 323–338
-
Steiner points in $l_\infty^2$ spaņe
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 1, 14–19
-
Finite-Dimensional Spaces where the Class of Chebyshev Sets Coincides with the Class of Closed and Monotone Path-Connected Sets
Mat. Zametki, 111:4 (2022), 483–493
-
Monotone path-connectedness of Chebyshev sets in three-dimensional spaces
Mat. Sb., 212:5 (2021), 37–57
-
The set of geometric medians for four-element subsets in Lindenstrauss spaces
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 6, 3–8
-
Existence of Lipschitz selections of the Steiner map
Mat. Sb., 209:2 (2018), 3–21
-
The length of minimal filling for a five-point metric space
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 6, 3–8
-
The length of a minimal filling of star type
Mat. Sb., 207:8 (2016), 31–46
-
Example of an antiproximinal, but not a 2-antiproximinal convex closed bounded body
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 5, 49–52
-
The $n$-antiproximinal sets
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 3, 29–34
-
Banach spaces that realize minimal fillings
Mat. Sb., 205:4 (2014), 3–20
-
On the Existence of Shortest Networks in Banach Spaces
Mat. Zametki, 94:1 (2013), 46–54
-
Steiner points in the space of continuous functions
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011, no. 6, 26–31
© , 2026