RUS  ENG
Full version
PEOPLE

Bednov Borislav Borusovich

Publications in Math-Net.Ru

  1. Half-space from $\mathbb Z^n$ forms a Chebyshev subspace in $L_1[0, 1]^n$

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:4 (2025),  62–70
  2. Three-Dimensional Spaces Where All Bounded Chebyshev Sets Are Monotone Path Connected

    Mat. Zametki, 114:3 (2023),  323–338
  3. Steiner points in $l_\infty^2$ spaņe

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 1,  14–19
  4. Finite-Dimensional Spaces where the Class of Chebyshev Sets Coincides with the Class of Closed and Monotone Path-Connected Sets

    Mat. Zametki, 111:4 (2022),  483–493
  5. Monotone path-connectedness of Chebyshev sets in three-dimensional spaces

    Mat. Sb., 212:5 (2021),  37–57
  6. The set of geometric medians for four-element subsets in Lindenstrauss spaces

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 6,  3–8
  7. Existence of Lipschitz selections of the Steiner map

    Mat. Sb., 209:2 (2018),  3–21
  8. The length of minimal filling for a five-point metric space

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 6,  3–8
  9. The length of a minimal filling of star type

    Mat. Sb., 207:8 (2016),  31–46
  10. Example of an antiproximinal, but not a 2-antiproximinal convex closed bounded body

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 5,  49–52
  11. The $n$-antiproximinal sets

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 3,  29–34
  12. Banach spaces that realize minimal fillings

    Mat. Sb., 205:4 (2014),  3–20
  13. On the Existence of Shortest Networks in Banach Spaces

    Mat. Zametki, 94:1 (2013),  46–54
  14. Steiner points in the space of continuous functions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011, no. 6,  26–31


© Steklov Math. Inst. of RAS, 2026