RUS  ENG
Full version
PEOPLE

Kozlov Georgii Vladimirovich

Publications in Math-Net.Ru

  1. The influence of transverse $\pi$$\pi$–bridging on formation properties of high-modulus fibers of carbon nanotubes

    Fizika Tverdogo Tela, 64:8 (2022),  1002–1005
  2. Calculation and prediction of the thermal distortion temperature of polyamide-$6$/organoclay nanocomposites

    TVT, 60:6 (2022),  950–952
  3. Effect of the nanofiller structure on the heat resistance of polyamide-$6/$organoclay nanocomposites

    TVT, 60:1 (2022),  139–141
  4. The description of the degree of reinforcement of polymer/carbon nanotubes nanocomposites: the “termite” limit

    Fizika Tverdogo Tela, 63:9 (2021),  1387–1390
  5. Physicochemical analysis of the structure and properties of polymer/carbon nanotube nanocomposites obtained from solution

    Zhurnal Tekhnicheskoi Fiziki, 91:8 (2021),  1249–1252
  6. Conditions for obtaining high-modulus polymer/carbon nanotube nanocomposites

    Zhurnal Tekhnicheskoi Fiziki, 91:3 (2021),  440–443
  7. Thermal stability of polymer/organoclay nanocomposites: Structural analysis

    TVT, 59:2 (2021),  313–315
  8. Comparative analysis of the efficiency of carbon nanotubes and graphene in reinforcement of polymer nanocomposites

    Fizika Tverdogo Tela, 62:8 (2020),  1240–1243
  9. Aggregation of nanofiller in polymer/carbon nanotube composites

    Prikl. Mekh. Tekh. Fiz., 61:2 (2020),  125–129
  10. Structural model of the viscosity of polymer melts of nanocomposites: Carbon nanotubes as macromolecular coils

    TVT, 58:2 (2020),  306–309
  11. Reinforcement of polymer/2D filler nanocomposites: basic postulates

    Fizika Tverdogo Tela, 61:8 (2019),  1488–1491
  12. The mechanisms of growth and the structure of 2D-nanofiller clusters in polymer media

    Fizika Tverdogo Tela, 61:1 (2019),  178–181
  13. Structural interpretation of variation in properties of polymer/carbon nanotube nanocomposites near the nanofiller percolation threshold

    Zhurnal Tekhnicheskoi Fiziki, 89:10 (2019),  1585–1588
  14. Viscosity of a melt of polymer/carbon nanotube nanocomposites. An analogy with a polymer solution

    TVT, 57:3 (2019),  472–474
  15. Effect of a nanofiller structure on the degree of reinforcement of polymer – carbon nanotubes nanocomposites with the use of a percolation model

    Prikl. Mekh. Tekh. Fiz., 59:4 (2018),  215–220
  16. Fractal model of the nanofiller structure affecting the degree of reinforcement of polyurethane–carbon nanotube nanocomposites

    Prikl. Mekh. Tekh. Fiz., 59:3 (2018),  141–144
  17. Modeling of carbon nanotubes as macromolecular coils. Melt viscosity

    TVT, 56:5 (2018),  848–850
  18. How to define a nanocomposite by the example of polymer/organoclay nanostructured composites

    Fizika Tverdogo Tela, 59:7 (2017),  1418–1421
  19. Structural model for the reinforcement of polymethyl methacrylate/carbon nanotube nanocomposites at an ultralow nanofiller content

    Zhurnal Tekhnicheskoi Fiziki, 86:10 (2016),  99–103
  20. The nanofiller effective length and reinforcement degree of nanocomposites polymer/carbon nanotubes (nanofilaments)

    CPM, 17:4 (2015),  609–613
  21. The deformability of blends polycarbonate/poly(ethylene terephthalate)

    CPM, 17:2 (2015),  287–292
  22. Description of the degree of reinforcement of polymer/carbon nanotube nanocomposites in the framework of percolation models

    Fizika Tverdogo Tela, 57:5 (2015),  962–964
  23. Fire resistance structural model of polymer–organoclay composites

    TVT, 53:4 (2015),  585–588
  24. Structure and properties of particulate-filled polymer nanocomposites

    UFN, 185:1 (2015),  35–64
  25. A fractal model of melt viscosity of a polypropylene-carbon nanotube nanocomposite

    TVT, 50:6 (2012),  785–788
  26. The interrelation of a fractal dimension and branching factor of macromolecular coils

    News of the Kabardin-Balkar scientific center of RAS, 2009, no. 3,  130–134
  27. Polymers as natural nanocomposites: elasticity modulus and polymer chains tightnes

    News of the Kabardin-Balkar scientific center of RAS, 2009, no. 1,  121–124
  28. The yielding process of particulate-filled polymer nanocomposites

    News of the Kabardin-Balkar scientific center of RAS, 2007, no. 1,  59–62
  29. Multifractal treatment of free volume and diffusion of gases in polyethylene

    TVT, 45:6 (2007),  832–837
  30. The structure and thermal stability of polymer materials: A fractal model

    TVT, 45:3 (2007),  355–358
  31. Influence of the sizes of gas molecules on their diffusion in cross-linked polyethylene

    News of the Kabardin-Balkar scientific center of RAS, 2005, no. 2,  55–57
  32. Influence of stress concentration of particles of the filement on the structure and strength of the interfacial layer in polymer composites

    News of the Kabardin-Balkar scientific center of RAS, 2004, no. 2,  45–48
  33. Formation of the polimeric films structure: Witten-Sander model

    News of the Kabardin-Balkar scientific center of RAS, 2004, no. 2,  40–48
  34. Relationship between multifractal characteristics and structural parameters for dispersed-filled polymer composites

    News of the Kabardin-Balkar scientific center of RAS, 2001, no. 2,  81–85
  35. A cluster model for the polymer amorphous state

    UFN, 171:7 (2001),  717–764
  36. Crystallinity and fractal characteristics for amorphous-crystalline polyethylenes

    News of the Kabardin-Balkar scientific center of RAS, 2000, no. 1,  108–113
  37. Fractal analysis of interfacial adhesion and interfacial layer in polyhydroxyether-graphite composites

    News of the Kabardin-Balkar scientific center of RAS, 2000, no. 1,  104–107
  38. Structure and properties of polymers in terms of the fractal approach

    Usp. Khim., 69:6 (2000),  572–599
  39. Fractal analysis of macromolecules

    Usp. Khim., 69:4 (2000),  378–399
  40. Study by IR spectroscopy of the structure of non-crystalline regions of modified high-density polyethylene

    News of the Kabardin-Balkar scientific center of RAS, 1999, no. 2,  65–68
  41. Regularities of the frequency and temperature behavior of dynamical conductivity of the superionic conductors

    Dokl. Akad. Nauk SSSR, 289:4 (1986),  846–850
  42. New results on the dynamics of Rochelle salt crystals (a system with a “double” critical point)

    UFN, 149:2 (1986),  331–334
  43. Dielectric spectroscopy of soft modes in ferroelectrics

    UFN, 135:3 (1981),  515–518

  44. Fluctuation free volume as a measure of the degree of disorder in amorphous glassy polymers

    News of the Kabardin-Balkar scientific center of RAS, 2004, no. 1,  31–36
  45. Structure and properties of extruded polyarylate

    News of the Kabardin-Balkar scientific center of RAS, 2001, no. 1,  70–78
  46. Aleksandr Mikhaĭlovich Prokhorov (on his seventy-fifth birthday)

    Kvantovaya Elektronika, 18:7 (1991),  895–896
  47. Spin-flipping transitions and dynamic properties of rare-earth weak ferromagnetics

    UFN, 161:9 (1991),  211–214


© Steklov Math. Inst. of RAS, 2026