RUS  ENG
Full version
PEOPLE

Yevstafyeva Victoria Viktorovna

Publications in Math-Net.Ru

  1. Estimates for a Solution of a Multidimensional System of Ordinary Differential Equations with a Relay Nonlinearity and a Perturbation

    Mat. Zametki, 118:4 (2025),  494–514
  2. Dynamics of relay systems with hysteresis and harmonic perturbation

    Eurasian Math. J., 15:2 (2024),  48–60
  3. On One Type of Oscillatory Solutions of a Nonautonomous System with Relay Hysteresis

    Mat. Zametki, 115:5 (2024),  724–740
  4. On Motions of a Dynamical System with a Relay Hysteresis

    Rus. J. Nonlin. Dyn., 20:4 (2024),  565–579
  5. Theorem on the existence of two-point oscillatory solutions to a relay perturbed system with a negative eigenvalue of the matrix

    Sib. Èlektron. Mat. Izv., 21:2 (2024),  990–1010
  6. Control design for a perturbed system with an ambiguous nonlinearity

    Avtomat. i Telemekh., 2023, no. 3,  44–64
  7. Criterion for the Existence of Two-Point Oscillatory Solution of a Perturbed System with a Relay

    Mat. Zametki, 114:2 (2023),  260–273
  8. Periodic modes in an automatic control system with a three-position hysteresis relay

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:4 (2022),  596–607
  9. Existence of $T/k$-Periodic Solutions of a Nonlinear Nonautonomous System Whose Matrix Has a Multiple Eigenvalue

    Mat. Zametki, 109:4 (2021),  529–543
  10. Method for the transformation of complex automatic control systems to integrable form

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:2 (2021),  196–212
  11. Dynamics and synchronization in feedback cyclic structures with hysteresis oscillators

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:2 (2020),  186–199
  12. On existence conditions for a two-point oscillating periodic solution in an non-autonomous relay system with a Hurwitz matrix

    Avtomat. i Telemekh., 2015, no. 6,  42–56
  13. Existence of the unique kT-periodic solution for one class of nonlinear systems

    J. Sib. Fed. Univ. Math. Phys., 6:1 (2013),  136–142
  14. On necessary conditions for existence of periodic solutions in a dynamic system with discontinuous nonlinearity and an external periodic influence

    Ufimsk. Mat. Zh., 3:2 (2011),  20–27

  15. Letter to the Editor

    Mat. Zametki, 119:2 (2026),  312
  16. V. F. Demianov

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 2,  154–156


© Steklov Math. Inst. of RAS, 2026