RUS  ENG
Full version
PEOPLE

Chernozatonskii Leonid Alexandrovich

Publications in Math-Net.Ru

  1. Mosaic structure of quasicrystals of three hexagonal atomic layers

    Pis'ma v Zh. Èksper. Teoret. Fiz., 121:8 (2025),  662–666
  2. Formation of diamond and/or lonsdaleite phases under the effect of a nanoindenter on multilayer graphene: machine learning simulation

    Pis'ma v Zh. Èksper. Teoret. Fiz., 119:11 (2024),  831–839
  3. Mechanical characteristics of diamond-like moirгé films

    Pis'ma v Zh. Èksper. Teoret. Fiz., 116:10 (2022),  716–723
  4. Diamond-like films from twisted few-layer graphene

    Pis'ma v Zh. Èksper. Teoret. Fiz., 115:3 (2022),  184–189
  5. Theoretical study of the electronic and transport properties of lateral 2D-1D-2D graphene–CNT–graphene structures

    Pis'ma v Zh. Èksper. Teoret. Fiz., 115:2 (2022),  103–107
  6. Wave-packet dynamics study of the transport characteristics of perforated bilayer graphene nanoribbons

    Pis'ma v Zh. Èksper. Teoret. Fiz., 112:5 (2020),  319–324
  7. Study of a new type of crimped-shape nanotubes cut from bilayer graphene with the Moiré angle $\Theta=27.8^\circ$

    Pis'ma v Zh. Èksper. Teoret. Fiz., 111:7 (2020),  469–474
  8. Transition mechanism from semimetallic to semiconductor behavior in a graphene film at the formation of a multiply connected structure

    Pis'ma v Zh. Èksper. Teoret. Fiz., 111:4 (2020),  244–248
  9. Simulation of the formation and mechanical properties of layered structures with polymerized fullerene-graphene components

    Pis'ma v Zh. Èksper. Teoret. Fiz., 111:2 (2020),  93–100
  10. Elastic properties of bilayer graphene nanostructures with closed holes

    Pis'ma v Zh. Èksper. Teoret. Fiz., 109:7 (2019),  481–486
  11. Formation of superhard chromium carbide crystal microrods in Ni-Cr-C systems

    Pis'ma v Zh. Èksper. Teoret. Fiz., 107:7 (2018),  470–473
  12. Features of 30$^\circ$ Moiré Graphene Bilayers with Folded Holes

    Pis'ma v Zh. Èksper. Teoret. Fiz., 107:5 (2018),  333–337
  13. Limitations of the fluorination of graphene on a substrate

    Pis'ma v Zh. Èksper. Teoret. Fiz., 107:1 (2018),  73–78
  14. Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties, and applications

    UFN, 188:1 (2018),  3–30
  15. Electronic and transport properties of heterophase compounds based on MoS$_2$

    Pis'ma v Zh. Èksper. Teoret. Fiz., 105:4 (2017),  230–234
  16. Formation, structure, and properties of “welded” $h$-BN/graphene compounds

    Pis'ma v Zh. Èksper. Teoret. Fiz., 104:1 (2016),  38–43
  17. New metallic quasi-two-dimensional structures of graphene and molybdenum disulfide layers with embedded rhenium atoms

    Pis'ma v Zh. Èksper. Teoret. Fiz., 101:2 (2015),  107–111
  18. Edge-modified zigzag-shaped graphene nanoribbons: Structure and electronic properties

    Fizika Tverdogo Tela, 56:10 (2014),  2066–2075
  19. Bigraphene nanomeshes: Structure, properties, and formation

    Pis'ma v Zh. Èksper. Teoret. Fiz., 99:5 (2014),  353–359
  20. Novel graphene-based nanostructures: physicochemical properties and applications

    Usp. Khim., 83:3 (2014),  251–279
  21. Quasi-one-dimensional fullerene-nanotube composites: Structure, formation energetics, and electronic properties

    Pis'ma v Zh. Èksper. Teoret. Fiz., 97:2 (2013),  119–126
  22. Graphene-based semiconductor nanostructures

    UFN, 183:2 (2013),  113–132
  23. Formation of graphene quantum dots by “Planting” hydrogen atoms at a graphene nanoribbon

    Pis'ma v Zh. Èksper. Teoret. Fiz., 95:5 (2012),  290–295
  24. Surface properties of thin-film polarizers modified by carbon nanostructures

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 37:24 (2011),  49–56
  25. Metallic Beta-Phase Silicon Nanowires: Structure and Electronic Properties

    Pis'ma v Zh. Èksper. Teoret. Fiz., 92:5 (2010),  390–393
  26. Diamond-like C2H nanolayer, diamane: Simulation of the structure and properties

    Pis'ma v Zh. Èksper. Teoret. Fiz., 90:2 (2009),  144–148
  27. Graphene-nanotube structures: Constitution and formation energy

    Pis'ma v Zh. Èksper. Teoret. Fiz., 89:7 (2009),  412–417
  28. New boron barrelenes and tubulenes

    Pis'ma v Zh. Èksper. Teoret. Fiz., 87:9 (2008),  575–579
  29. Superlattices consisting of ``lines'' of adsorbed hydrogen atom pairs on graphene

    Pis'ma v Zh. Èksper. Teoret. Fiz., 85:1 (2007),  84–89
  30. Исследование спектральных свойств сверхрешеток нанотрубок в магнитном поле

    Matem. Mod. Kraev. Zadachi, 3 (2007),  75–78
  31. Metal-semiconductor (semimetal) superlattices on a graphite sheet with vacancies

    Pis'ma v Zh. Èksper. Teoret. Fiz., 84:3 (2006),  141–145
  32. Исследование спектральных свойств математической модели периодической системы нанотрубок

    Matem. Mod. Kraev. Zadachi, 3 (2006),  93–96
  33. A study on the mechanism of interaction between fullerene and cycloheximide for the explanation of the beneficial effect of C60 on the processes of spatial memory restoration

    Mendeleev Commun., 15:6 (2005),  227–229
  34. A new class of MO2 dioxide nanotubes (M=Si, Ge, Sn, Pb) composed of “square” lattices of atoms: Their structure and energy characteristics

    Pis'ma v Zh. Èksper. Teoret. Fiz., 80:10 (2004),  732–736
  35. Defect formation in a carbon onion upon irradiation with Ar ions

    Pis'ma v Zh. Èksper. Teoret. Fiz., 79:8 (2004),  460–466
  36. Hybrids of carbyne and fullerene

    Pis'ma v Zh. Èksper. Teoret. Fiz., 79:3 (2004),  153–157
  37. Sticking of carbon nanotube $Y$ junction branches

    Pis'ma v Zh. Èksper. Teoret. Fiz., 78:5 (2003),  777–781
  38. Mechanism of carbon onion transformation into diamond-like structure

    Pis'ma v Zh. Èksper. Teoret. Fiz., 76:7 (2002),  532–537
  39. Carbon systems of polymerized nanotubes: Crystal and electronic structures

    Pis'ma v Zh. Èksper. Teoret. Fiz., 74:9 (2001),  523–527
  40. Diboride bifullerenes and binanotubes

    Pis'ma v Zh. Èksper. Teoret. Fiz., 74:6 (2001),  369–373
  41. A new crystalline form of carbon based on the C$_{36}$ fullerene: Simulating its crystal and electronic structure

    Pis'ma v Zh. Èksper. Teoret. Fiz., 73:9 (2001),  556–560
  42. Structure and nonlinear acoustic properties of the $\mathrm{YBa}_{2}\mathrm{Cu}_{3}\mathrm{O}_{x}$ cenunic

    Fizika Tverdogo Tela, 33:7 (1991),  2148–2152
  43. Effective electrooptical constants of nonconducting superlattices

    Fizika Tverdogo Tela, 32:11 (1990),  3439–3441
  44. PARTIAL REFLECT-SYMMETRY OF 2-DIMENSIONAL PERIODIC STRUCTURES

    Zhurnal Tekhnicheskoi Fiziki, 60:2 (1990),  32–38
  45. Acoustooptical properties of superlattices in the long wavelength approximation

    Fizika Tverdogo Tela, 30:6 (1988),  1641–1645
  46. Temperature dependence of the sound velocity in $\mathrm{Y}$$\mathrm{Ba}$$\mathrm{Cu}$$\mathrm{O}$

    Fizika Tverdogo Tela, 30:3 (1988),  882–884
  47. Acousto-optical umklapp processes in superlattices

    Fizika Tverdogo Tela, 29:10 (1987),  3142–3143
  48. Concentration of the wave flow in periodic structures

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 13:19 (1987),  1201–1205
  49. Asymmetry of SAS reflection by two-dimensional periodic structures

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 13:5 (1987),  312–316
  50. Dynamics of concentration of surface magnetoelastic waves in hematite crystals

    Fizika Tverdogo Tela, 28:10 (1986),  3177–3179
  51. Phonon concentration catastrophes in cubic crystals

    Fizika Tverdogo Tela, 28:7 (1986),  2238–2240
  52. Concentration types of surface phonons

    Fizika Tverdogo Tela, 28:2 (1986),  419–424
  53. On increase of parametric generation efficiency in periodical media

    Fizika Tverdogo Tela, 27:3 (1985),  682–685
  54. Reversal of Surface Acoustic Wave Front by an Electric Field in Semiconductor Structure

    Fizika i Tekhnika Poluprovodnikov, 18:5 (1984),  949–951
  55. Вынужденное рассеяние ультразвука и его «запоминание»в полупроводнике

    Fizika i Tekhnika Poluprovodnikov, 17:4 (1983),  748–750
  56. Эффективное отражение поверхностных акустических волн от периодической полупроводниковой структуры

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 9:1 (1983),  30–35


© Steklov Math. Inst. of RAS, 2026