RUS  ENG
Full version
PEOPLE

Tuzhilin Avgustin Alekseevich

Publications in Math-Net.Ru

  1. Computer simulation of digital deterministic systems

    Avtomat. i Telemekh., 1980, no. 2,  125–134
  2. On some analysis and synthesis problems in general system theory

    Avtomat. i Telemekh., 1978, no. 11,  129–137
  3. On the theory of Maljužinec's inhomogeneous functional equations

    Differ. Uravn., 9:11 (1973),  2058–2064
  4. Diffraction of a plane sonic wave in an angular domain whose boundaries are absolutely rigid and slippery and coated thin elastic plates

    Differ. Uravn., 9:10 (1973),  1875–1888
  5. A theory of functional equations of Maljužinec. IV. Nonhomogeneous functional equations with periodic coefficients

    Differ. Uravn., 7:7 (1971),  1276–1287
  6. A theory of the functional equations of Maljužinec. III. In homogeneous functional equations. General theory

    Differ. Uravn., 7:6 (1971),  1077–1088
  7. The use of recurrence relations for MacDonald integrals to derive expressions for electromagnetic fields produced by dipoles in the presence of a perfectly conducting halfplane

    Differ. Uravn., 6:8 (1970),  1520–1523
  8. A theory of the functional equations of Maljužinec. II. The theory of infinite Barnes products. General solutions of homogeneous functional equations of Maljužinec. Various representations of the fundamental solutions

    Differ. Uravn., 6:6 (1970),  1048–1063
  9. A theory of the functional equations of Maljužinec. I. The homogeneous functional equations. General properties of the solutions. Special cases

    Differ. Uravn., 6:4 (1970),  692–704
  10. Diffraction of a plane acoustic wave on a thin semi-infinite elastic plate

    Zh. Vychisl. Mat. Mat. Fiz., 10:5 (1970),  1210–1227
  11. Asymptotic expansions of the solution of the problem of the radiation of waves by the vibrating edges of an arbitrary wedge

    Zh. Vychisl. Mat. Mat. Fiz., 10:2 (1970),  374–382
  12. Asymptotic expansions of the solutions of problems of the diffraction of waves in angular and wedge-shaped domains

    Zh. Vychisl. Mat. Mat. Fiz., 10:1 (1970),  99–113
  13. Asymptotic expansions of a certain class of integrals

    Zh. Vychisl. Mat. Mat. Fiz., 9:5 (1969),  1024–1035
  14. On the theory of the Fresnel integral

    Zh. Vychisl. Mat. Mat. Fiz., 9:4 (1969),  938–944
  15. The theory of Macdonald integrals. III. New representations of Macdonald integrals

    Differ. Uravn., 4:10 (1968),  1892–1900
  16. Представление электромагнитных полей, порожденных диполями в присутствии идеально проводящей полуплоскости, через интегралы Макдональда

    Differ. Uravn., 3:11 (1967),  1971–1989
  17. The theory of Macdonald integrals. II. Asymptotic expansions

    Differ. Uravn., 3:10 (1967),  1751–1765
  18. The theory of Macdonald integrals. I. Recurrent relations. Uniformly convergent series

    Differ. Uravn., 3:7 (1967),  1195–1212
  19. Electromagnetic field excited by an electric dipole with a wedge

    Dokl. Akad. Nauk SSSR, 146:5 (1962),  1039–1042


© Steklov Math. Inst. of RAS, 2026