RUS  ENG
Full version
PEOPLE

Shugrin Sergei Mikhailovich

Publications in Math-Net.Ru

  1. Thermodynamically non-equilibrium bubble medium

    Prikl. Mekh. Tekh. Fiz., 39:3 (1998),  100–110
  2. Flow of a thin layer of a viscous liquid over a dry surface

    Prikl. Mekh. Tekh. Fiz., 39:2 (1998),  47–51
  3. Media with equations of state that depend on derivatives

    Prikl. Mekh. Tekh. Fiz., 37:2 (1996),  35–49
  4. Dissipative two-velocity hydrodynamics

    Prikl. Mekh. Tekh. Fiz., 35:4 (1994),  59–68
  5. Two-velocity hydrodynamics and thermodynamics

    Prikl. Mekh. Tekh. Fiz., 35:4 (1994),  41–59
  6. Conservation laws, invariance, and the equations of gas dynamics

    Prikl. Mekh. Tekh. Fiz., 30:2 (1989),  10–18
  7. A system of inequalities connected with elliptic and parabolic operators

    Differ. Uravn., 20:11 (1984),  1975–1985
  8. Galilean systems of differential equations

    Differ. Uravn., 16:12 (1980),  2205–2218
  9. Strong and weak extensions of differential operators. II

    Differ. Uravn., 15:11 (1979),  2071–2084
  10. Strong and weak extension of differential operators

    Differ. Uravn., 11:11 (1975),  2067–2082
  11. A certain iterational method

    Sibirsk. Mat. Zh., 12:3 (1971),  684–689
  12. Symmetric differential equations. III

    Sibirsk. Mat. Zh., 11:4 (1970),  896–908
  13. Symmetric differential equations. II

    Sibirsk. Mat. Zh., 11:3 (1970),  677–696
  14. Difference schemes for symmetric differential equations

    Dokl. Akad. Nauk SSSR, 178:2 (1968),  311–313
  15. Symmetric differential equations

    Sibirsk. Mat. Zh., 9:2 (1968),  426–442
  16. On a system of linear hyperbolic equations defined on a complex

    Zh. Vychisl. Mat. Mat. Fiz., 6:2 (1966),  368–374
  17. On non-homogeneous difference schemes

    Zh. Vychisl. Mat. Mat. Fiz., 6:1 (1966),  184–185
  18. Behaviour of a difference scheme for equations of shallow water

    Zh. Vychisl. Mat. Mat. Fiz., 4:supplement to № 4 (1964),  345–352
  19. A numerical method for calculating the propagation of linear waves in open channels, and an application to the flood problem

    Dokl. Akad. Nauk SSSR, 151:3 (1963),  525–527


© Steklov Math. Inst. of RAS, 2026