RUS  ENG
Full version
PEOPLE

Kholostova Olga Vladimirovna

Publications in Math-Net.Ru

  1. On the Motions of a Nearly Autonomous Hamiltonian System at Parameter Values Close to the Boundary of Stability Regions of the Limiting Autonomous Problem

    Rus. J. Nonlin. Dyn., 21:4 (2025),  623–648
  2. On Pendulum-Type Motions and Permanent Rotations in an Approximate Problem of the Dynamics of a Rigid Body with a Vibrating Suspension

    Regul. Chaotic Dyn., 30:5 (2025),  847–865
  3. On Periodic Motions of a Nonautonomous Hamiltonian System at Resonance 2:1:1

    Rus. J. Nonlin. Dyn., 20:4 (2024),  493–511
  4. On the motion of a dynamically symmetric satellite in one case of multiple parametric resonance

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:4 (2024),  594–612
  5. On Nonlinear Oscillations of a Near-Autonomous Hamiltonian System in One Case of Integer Nonequal Frequencies

    Rus. J. Nonlin. Dyn., 19:4 (2023),  447–471
  6. On Nonlinear Oscillations of a Time-Periodic Hamiltonian System at a 2:1:1 Resonance

    Rus. J. Nonlin. Dyn., 18:4 (2022),  481–512
  7. On Nonlinear Oscillations of a Near-Autonomous Hamiltonian System in the Case of Two Identical Integer or Half-Integer Frequencies

    Rus. J. Nonlin. Dyn., 17:1 (2021),  77–102
  8. On the Dynamics of a Rigid Body in the Hess Case at High-Frequency Vibrations of a Suspension Point

    Rus. J. Nonlin. Dyn., 16:1 (2020),  59–84
  9. On the motions of a near-autonomous hamiltonian system in the cases of two zero frequencies

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:4 (2020),  672–695
  10. Nonlinear Stability Analysis of Relative Equilibria of a Solid Carrying a Movable Point Mass in the Central Gravitational Field

    Rus. J. Nonlin. Dyn., 15:4 (2019),  505–512
  11. On the Motions of One Near-Autonomous Hamiltonian System at a $1:1:1$ Resonance

    Regul. Chaotic Dyn., 24:3 (2019),  235–265
  12. On multiple fourth-order resonances in a nonautonomous two-degree-of-freedom Hamiltonian system

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:2 (2019),  275–294
  13. On periodic motions of a symmetrical satellite in an orbit with small eccentricity in the case of multiple combinational resonance of the third and fourth orders

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:3 (2018),  373–394
  14. On periodic motions of a nonautonomous Hamiltonian system in one case of multiple parametric resonance

    Nelin. Dinam., 13:4 (2017),  477–504
  15. On the stability of stationary rotations in the approximate problem of motion of Lagrange’s top with a vibrating suspension point

    Nelin. Dinam., 13:1 (2017),  81–104
  16. A Study of the Motions of an Autonomous Hamiltonian System at a 1:1 Resonance

    Regul. Chaotic Dyn., 22:7 (2017),  792–807
  17. A study of permanent rotations of a heavy dynamically symmetric rigid body with a vibrating suspension point

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:4 (2017),  590–607
  18. On the influence of vertical vibrations on the stability of permanent rotations of a rigid body about axes lying in the main plane of inertia

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:1 (2017),  98–120
  19. On the periodic motions of a Hamiltonian system in the neighborhood of unstable equilibrium in the presence of a double three-order resonance

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:3 (2016),  418–438
  20. The interaction of resonances of the third and fourth orders in a Hamiltonian two-degree-of-freedom system

    Nelin. Dinam., 11:4 (2015),  671–683
  21. On the stability of the specific motions of a heavy rigid body due to fast vertical vibrations of one of its points

    Nelin. Dinam., 11:1 (2015),  99–116
  22. Motions of a two-degree-of-freedom Hamiltonian system in the presence of multiple third-order resonances

    Nelin. Dinam., 8:2 (2012),  267–288
  23. To dynamics of a double pendulum with a horizontally vibrating point of suspension

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 2,  114–129
  24. On stability of permanent Staude's rotations in a general case of a mass geometry of a rigid body

    Nelin. Dinam., 5:3 (2009),  357–375
  25. On bifurcations and stability of resonance periodic motions of hamiltonian systems with one degree of freedom caused by degeneration of the hamiltonian

    Nelin. Dinam., 2:1 (2006),  89–110
  26. Lineaer analysis of stability the planar oscillations of a satellite being a plate in a circular orbit

    Nelin. Dinam., 1:2 (2005),  181–190
  27. On a Case of Periodic Motions of the Lagrangian Top with Vibrating Fixed Point $S^2$

    Regul. Chaotic Dyn., 4:4 (1999),  81–93


© Steklov Math. Inst. of RAS, 2026