RUS  ENG
Full version
PEOPLE

Laptev Ari Arievich

Publications in Math-Net.Ru

  1. Eigenvalues of non-selfadjoint functional difference operators

    Funktsional. Anal. i Prilozhen., 59:3 (2025),  49–63
  2. Spectral and functional inequalities for antisymmetric functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 2,  104–109
  3. Spectral and functional inequalities on antisymmetric functions

    Ufimsk. Mat. Zh., 17:1 (2025),  142–153
  4. Absolutely continuous spectrum of a typical Schrödinger operator with an operator-valued potential

    Algebra i Analiz, 35:1 (2023),  226–242
  5. Hardy inequality for antisymmetric functions

    Funktsional. Anal. i Prilozhen., 55:2 (2021),  55–64
  6. A Sharp Lieb–Thirring Inequality for Functional Difference Operators

    SIGMA, 17 (2021), 105, 10 pp.
  7. On a class of sharp multiplicative Hardy inequalities

    Algebra i Analiz, 32:3 (2020),  180–190
  8. Magnetic Lieb–Thirring inequality for periodic functions

    Uspekhi Mat. Nauk, 75:4(454) (2020),  207–208
  9. Lieb-Thirring inequalities on the sphere

    Algebra i Analiz, 31:3 (2019),  116–135
  10. On the Lieb–Thirring Constant on the Torus

    Mat. Zametki, 106:6 (2019),  946–950
  11. Bound on the number of negative eigenvalues of two-dimensional Schrödinger operators on domains

    Algebra i Analiz, 30:3 (2018),  250–272
  12. Trace formulas for a discrete Schrödinger operator

    Funktsional. Anal. i Prilozhen., 51:3 (2017),  81–86
  13. Lieb-Thirring inequalities on the torus

    Mat. Sb., 207:10 (2016),  56–79
  14. Hardy's inequality for a magnetic Grushin operator with Aharonov–Bohm type magnetic field

    Algebra i Analiz, 23:2 (2011),  1–8
  15. On the Simon–Spencer theorem

    Zh. Mat. Fiz. Anal. Geom., 4:1 (2008),  108–120
  16. The discrete spectrum of a two-dimensional second-order periodic elliptic operator perturbed by a decreasing potential. I. A semi-infinite gap

    Algebra i Analiz, 12:4 (2000),  36–78
  17. The Negative Spectrum of a Class of Two-Dimensional Schrödinger Operators with Potentials Depending Only on Radius

    Funktsional. Anal. i Prilozhen., 34:4 (2000),  85–87
  18. Spectral asymptotics of a class of Fourier integral operators.

    Tr. Mosk. Mat. Obs., 43 (1981),  92–115
  19. On the estimates for singular values of the integral operators of certain class

    Zap. Nauchn. Sem. LOMI, 110 (1981),  95–99
  20. Spectral asymptotics of a composition of pseudodifferential operators and reflections from the boundary

    Dokl. Akad. Nauk SSSR, 236:4 (1977),  800–803
  21. Spectral asymptotic behavior of a class of integral operators

    Mat. Zametki, 16:5 (1974),  741–750

  22. International Sirius Mathematics Center

    Sirius Math. J., 1:1 (2025),  8–9
  23. On the 90th birthday of Nina Nikolaevna Uraltseva

    Uspekhi Mat. Nauk, 79:6(480) (2024),  179–192
  24. Farit Gabidinovich Avkhadiev (on his 70th birthday)

    Uspekhi Mat. Nauk, 73:1(439) (2018),  187–190
  25. Mikhail Zakharovich Solomyak (obituary)

    Uspekhi Mat. Nauk, 72:5(437) (2017),  181–186
  26. Mikhail Shlemovich Birman (obituary)

    Uspekhi Mat. Nauk, 65:3(393) (2010),  185–190


© Steklov Math. Inst. of RAS, 2026