RUS  ENG
Full version
PEOPLE

Kamenetskiy Vladimir Aleksandrovich

Publications in Math-Net.Ru

  1. A frequency-domain criterion for the quadratic stability of discrete-time systems with switching between three linear subsystems

    Avtomat. i Telemekh., 2024, no. 7,  3–14
  2. The circle criterion and Tsypkin's criterion for systems with several nonlinearities without the use of the $S$-procedure

    Mat. Sb., 215:2 (2024),  33–47
  3. Matrix inequalities in the stability theory: new results based on the convolution theorem

    Avtomat. i Telemekh., 2023, no. 2,  103–121
  4. Discrete-time pairwise connected switched systems and Lur’e systems. Tsypkin’s criterion for systems with two nonlinearities

    Avtomat. i Telemekh., 2022, no. 9,  55–80
  5. Switched systems, Lur’e systems, absolute stability, Aizerman problem

    Avtomat. i Telemekh., 2019, no. 8,  9–28
  6. Frequency-domain stability conditions for discrete-time switched systems

    Avtomat. i Telemekh., 2018, no. 8,  3–26
  7. Frequency-domain stability conditions for hybrid systems

    Avtomat. i Telemekh., 2017, no. 12,  3–25
  8. Parametric stabilization of automatic control systems

    Avtomat. i Telemekh., 2011, no. 11,  86–101
  9. Attraction domains of delay systems: construction by the Lyapunov function method

    Avtomat. i Telemekh., 2005, no. 10,  42–53
  10. Approximation of a linear stabilization set

    Differ. Uravn., 33:3 (1997),  340–346
  11. Parametric Stabilization of Nonlinear Control Systems with Phase Constraints

    Avtomat. i Telemekh., 1996, no. 10,  65–76
  12. Parametric Stabilization in Large of Nonlinear Control Systems

    Avtomat. i Telemekh., 1996, no. 2,  47–56
  13. Synthesis of a constrained stabilizing control for nonlinear control systems

    Avtomat. i Telemekh., 1995, no. 1,  43–56
  14. Construction of Lyapunov functions for the estimation of regions of attraction

    Dokl. Akad. Nauk, 340:3 (1995),  305–307
  15. Construction of domains of attraction by the method of Lyapunov functions

    Avtomat. i Telemekh., 1994, no. 6,  10–26
  16. Design of a bounded stabilizing control for an $n$-multiple integrator

    Avtomat. i Telemekh., 1991, no. 6,  33–40
  17. A convolution method of matrix inequalities and absolute stability criteria for stationary control systems

    Avtomat. i Telemekh., 1989, no. 5,  28–39
  18. The gradient method of designing Lyapunov functions in problems of absolute stability

    Avtomat. i Telemekh., 1987, no. 1,  3–12
  19. Absolute Stability of Digital Control Systems with Nonstationary Nonlinearities

    Avtomat. i Telemekh., 1985, no. 8,  172–176
  20. Absolute stability and absolute instability of control systems with several nonlinear nonstationary elements

    Avtomat. i Telemekh., 1983, no. 12,  20–30
  21. A Frequency-Domain Stability Criterion for Hybrid Systems

    Avtomat. i Telemekh.,  0


© Steklov Math. Inst. of RAS, 2026