RUS  ENG
Full version
PEOPLE

Vorontsov Yurii Olegovich

Publications in Math-Net.Ru

  1. Numerical solution of the discrete BHH-equation in the normal case

    Sib. Zh. Vychisl. Mat., 21:4 (2018),  367–373
  2. Solvability conditions for the matrix equation $X^{\mathrm{T}}DX+AX+X^{\mathrm{T}}B+C=0$

    Zh. Vychisl. Mat. Mat. Fiz., 55:4 (2015),  555–557
  3. Numerical algorithm for solving quadratic matrix equations of a certain class

    Zh. Vychisl. Mat. Mat. Fiz., 54:11 (2014),  1707–1710
  4. Numerical algorithm for solving sesquilinear matrix equations of a certain class

    Zh. Vychisl. Mat. Mat. Fiz., 54:6 (2014),  901–904
  5. Numerical solution of matrix equations of the Stein type in the self-adjoint case

    Zh. Vychisl. Mat. Mat. Fiz., 54:5 (2014),  723–727
  6. Numerical solution of the matrix equation $X-A\overline{X}B=C$ in the self-adjoint case

    Zh. Vychisl. Mat. Mat. Fiz., 54:3 (2014),  371–374
  7. Numerical solution of the matrix equations $AX+X^TB=C$ and $AX+X^*B=C$ in the self-adjoint case

    Zh. Vychisl. Mat. Mat. Fiz., 54:2 (2014),  179–182
  8. Modifying a numerical algorithm for solving the matrix equation $X+AX^TB=C$

    Zh. Vychisl. Mat. Mat. Fiz., 53:6 (2013),  853–856
  9. Numerical algorithms for solving matrix equations $AX+BX^T=C$ and $AX+BX^*=C$

    Zh. Vychisl. Mat. Mat. Fiz., 53:6 (2013),  843–852
  10. Numerical solution of matrix equations of the form $X+AX^{\mathrm T}B=C$

    Zh. Vychisl. Mat. Mat. Fiz., 53:3 (2013),  331–335
  11. Numerical solution of the matrix equations $AX+X^TB=C$ and $X+AX^TB=C$ with rectangular coefficients

    Zap. Nauchn. Sem. POMI, 405 (2012),  54–58
  12. Conditions for unique solvability of the matrix equation $AX+X^\ast B=C$

    Zh. Vychisl. Mat. Mat. Fiz., 52:5 (2012),  775–783
  13. A numerical algorithm for solving the matrix equation $AX+X^\mathrm TB=C$

    Zh. Vychisl. Mat. Mat. Fiz., 51:5 (2011),  739–747
  14. On commutative algebras of Toeplitz-plus-Hankel matrices

    Zh. Vychisl. Mat. Mat. Fiz., 50:5 (2010),  805–816


© Steklov Math. Inst. of RAS, 2026