|
|
Publications in Math-Net.Ru
-
Numerical solution of the discrete BHH-equation in the normal case
Sib. Zh. Vychisl. Mat., 21:4 (2018), 367–373
-
Solvability conditions for the matrix equation $X^{\mathrm{T}}DX+AX+X^{\mathrm{T}}B+C=0$
Zh. Vychisl. Mat. Mat. Fiz., 55:4 (2015), 555–557
-
Numerical algorithm for solving quadratic matrix equations of a certain class
Zh. Vychisl. Mat. Mat. Fiz., 54:11 (2014), 1707–1710
-
Numerical algorithm for solving sesquilinear matrix equations of a certain class
Zh. Vychisl. Mat. Mat. Fiz., 54:6 (2014), 901–904
-
Numerical solution of matrix equations of the Stein type in the self-adjoint case
Zh. Vychisl. Mat. Mat. Fiz., 54:5 (2014), 723–727
-
Numerical solution of the matrix equation $X-A\overline{X}B=C$ in the self-adjoint case
Zh. Vychisl. Mat. Mat. Fiz., 54:3 (2014), 371–374
-
Numerical solution of the matrix equations $AX+X^TB=C$ and $AX+X^*B=C$ in the self-adjoint case
Zh. Vychisl. Mat. Mat. Fiz., 54:2 (2014), 179–182
-
Modifying a numerical algorithm for solving the matrix equation $X+AX^TB=C$
Zh. Vychisl. Mat. Mat. Fiz., 53:6 (2013), 853–856
-
Numerical algorithms for solving matrix equations $AX+BX^T=C$ and $AX+BX^*=C$
Zh. Vychisl. Mat. Mat. Fiz., 53:6 (2013), 843–852
-
Numerical solution of matrix equations of the form $X+AX^{\mathrm T}B=C$
Zh. Vychisl. Mat. Mat. Fiz., 53:3 (2013), 331–335
-
Numerical solution of the matrix equations $AX+X^TB=C$ and $X+AX^TB=C$ with rectangular coefficients
Zap. Nauchn. Sem. POMI, 405 (2012), 54–58
-
Conditions for unique solvability of the matrix equation $AX+X^\ast B=C$
Zh. Vychisl. Mat. Mat. Fiz., 52:5 (2012), 775–783
-
A numerical algorithm for solving the matrix equation $AX+X^\mathrm TB=C$
Zh. Vychisl. Mat. Mat. Fiz., 51:5 (2011), 739–747
-
On commutative algebras of Toeplitz-plus-Hankel matrices
Zh. Vychisl. Mat. Mat. Fiz., 50:5 (2010), 805–816
© , 2026